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Slow Manifold Structure in Explosive Kinetics. 1. Bifurcations of Points-at-Infinity in
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This article analyzes in detail the global geometric properties (structure of the slow and fast manifolds) of
prototypical models of explosive kinetics (the Semenov model for thermal explosion and the chain-branching
model). The concepts of global or generalized slow manifolds and the notions of heterogenaity @and
inversion for invariant manifolds are introduced in order to classify the different geometric features exhibited
by two-dimensional kinetic schemes by varying model parameters and to explain the phenomena that may
occur in model reduction practice. This classification stems from the definition of suitable Lyapunov-type
numbers and from the analysis of normal-to-tangent stretching rates. In the case of the Semenov model, we
show that the existence of a global slow manifold and its properties are controlled by a transcritical bifurcation
of the points-at-infinity, which can be readily identified by analyzing the Poinpaogected system. The

issue of slow manifold uniqueness and the implications of the theory with regard to the practical definition
of explosion limits are thoroughly addressed.

1. Introduction The reason for this and similar controversies in the definition
and the meaning of a slow manifold may be attributed to
different reasons: (i) the conditions imposed by different authors
on slow manifolds may have different natures (e.g., by imposing
some smoothness and analyticity criteria on the local representa-
tion of the manifold itsel®1); (ii) methods and definitions
deriving from perturbative analysis of singularly perturbed
systems are often intermingled with purely geometric conégpts
sCperturbation studies focus on local portions of a slow manifold

aIgoriFhms, and comput_ationa_l teChniqueS f(.)r solving and near the equilibrium point of a singularly perturbed system, and
reducing the model equatioA8Diagnostic analysis of complex a purely geometrical definition should be grounded on global

reaction schelmeg IS a cgntralllssue n c.hem|<_:al reaction theoryproperties defined throughout the phase space (see sections 3
and is becoming increasingly important in facing the enormous

lexitv of biochemical i work iated with and 5)); (iii) in practical applications to model reduction of
complexity of biochemical reaction networks associated wi complex kinetic schemes, “intrinsic low-dimensional manifolds”
subcellular metabolic and regulatory processes.

lack some basic properties (such as invariance), and this collides

_In the search for efficient simplified and reduced models, iih more formal mathematical definitioR8Correspondingly,
different computational approaches have been proposed and i, very basic concept of “slow/fast decomposition” of a

some cases successfully applfedt: The geometric paradigm  ¢omplex reaction scheme may involve some intrinsic degree
on which all these methods rely is the occurrence of SIOW ¢ arpitrariness because it relies on the specific method adopted

invariant manifold&*-* within the phase space. Intuitively, slow  ; odel diagnostics and reduction (ILDMCSP8 MIM, 20
manifolds are invariant, exponentially attracting manifolds on NTDRBLY). ' '

which neighboring orbits collapse. This implies that, apart for
a possibly short transient, the “relevant dynamics” evolves onto
a lower-dimensional manifold, along which the original stiffness
of the system can be softened, because “fast” modes, which
are exhausted, can be removed by projecting them out.
Notwithstanding the extensive use of the “slow-manifold
paradigm”, its definition is somehow still controversial, as
witnessed, e.g., by the scientific contest put forward by E. N.
Lorenz (“On the nonexistence of a slow manifdidand “The
slow manifold—what is it?%) on the existence and meaning
of a slow manifold in a low-dimensional model for the shallow
water equation&-17

The mathematical modeling of combustion processes under
well-stirred conditions involves the analysis of systems of
ordinary differential equations characterized by the occurrence
of a broad range of time scalésTime scale heterogeneity
implies stiffness (and the ensuing problems in the numerical
integration of model equations), but the occurrence of a time
scale separation makes it possible to use numerical procedure

Just because of these controversial issues, it is becoming
important to attempt to reconcile the various definitions by
resorting to a rational geometric characterization of the slow
manifold structure, capable of taking into account the different
phenomenologies occurring in chemical reaction systems.

The aim of this Article is to address the problem of when
and where a dynamical system exhibits a slow manifold and
how slow manifolds can be defined and characterized. In this
Article, we analyze simple (two-dimensional) models of ex-
plosive kinetics, which are especially suited for highlighting
the different phenomenologies and “pathologies” associated with
the slow manifold structure. The extension to higher dimensional

- - — ) . systems is developed in ref 21.
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“nonuniformity” of these manifolds and (i) identify the bifur-  defined in ann-dimensional phase space, egs R", and let
cational routes that are responsible for the possible “blow-up” ¢«(z) be the phase flow associated with eq 1. l[#tbe an
of a global slow manifold. m-dimensional smooth manifold embeddedrih*® The mani-
These bifurcations are of local nature and are related to thefold 7/is invariant for eq 1 ifp(z) € 7/for anyz € 7/and for
behavior of the points-at-infinity of the systems. The application anyt > O.
of the compactification technique due to Poiricadhe key An invariant manifold7/is exponentially attracting for eq 1
tool to address “manifold bifurcations”. This method has already if there is a neighborhood of 7/’and two positive constants
been applied in the field of complex reaction schemes and C andA such that
manifold structures by Davis and Sko#j@nd by Davis and
Klippenstein?® The local bifurcations at infinity may have a d@(2),7’) < Ce™dz, 7)) DzeU [t>0 (2
dramatic impact on the global behavior of the system and can
be readily identified by analyzing the Poincamjected system  Where dg,7/’) = infue |1z — w|| is a measure of the minimum
associated with the original model. distance of poinz from points belonging to the manifold”
As a model system, we consider the classical Semenov modef@nd|[*|| is @ norm inR" (for example, the Euclidean norfiz||
for a thermal explosiof}*>which has been the subject of in- = /50 779,
tense investigation as a benchmark for testing the validity of cri-  |nvariance and the exponential attracting nature are the two
teria aimed at determining explosion lin#fts?® and, more recent-  basic properties defining what is commonly regarded as a slow
ly, for validating some computational methods for model manifold for eq 1. We will discuss in sections 3 and 5 that these
reduction!8 properties should be further complemented by another condition
We develop a thorough analysis of this model oriented toward related to the behavior of normal perturbations.
the geometric and bifurcational characterization of the slow and  To approach vector dynamics and introduce the definition
fast invariant manifolds. Indeed, the Semenov model provides of linear stability for a one-dimensional invariant manifold
a simple and clear example of the blow-up of a global slow (because the properties of one-dimensional invariant manifolds
manifold, which we believe to be frequent in explosive are the main focus of the present Article), Tetoe the tangent
combustion systems. In point of fact, we show that qualitatively spacé? at the pointz. T, is isomorphic toR" and can be
similar features (local bifurcation of points-at-infinity and global decomposed into the direct suba @ N,, whereC, is the one-
slow manifold blow-up) occur in other models of combustion dimensional vector subspace spannedF(g), i.e., by the vector
kinetics and explosions, such as the chain-branching n#8del. field itself, andN, is the orthogonal complement (@, in R™.
Although both the Semenov and the chain-branching models Let IT,: T, — N, be the orthogonal projection operator, mapping
can be rightly classified as singularly perturbed problems, we a vectorv € T; into its component lying in the subspab.
do not analyze these models via classical perturbative methods, Within the tangent bundle, the vector dynamics associated
but we follow a purely geometric approach, based on the with eq 1 is defined by the linearized equation
properties of normal/tangent stretching rates, and ultimately on ()
the concept of normal hyperbolicity. aviy _ .
The Article is organized as follows. Section 2 is a concise a " OO VO €Thp (3)
review of the basic mathematical tools used throughout the
Article (e.g., vector dynamics and normalitangent stretching Which, when coupled to eq 1, forms a skew-product system,
rates). Section 3 presents a phenomenological overview of thel-€-» @ System of differential equations, in the present case in
Semenov dynamics as it regards invariant manifold structure the variablez andv, in which the first set of gvolutlon equations
and subsequently formulates a geometric definition of global (€d 1) for the variablez depends exclusively oa and is
and generalized slow manifolds via the introduction of suitable decoupled from the evolution equations for(eq 3), which
Lyapunov-type numbers. The development of the theory leads 4ePends on botlz andv. In eq 3,F*(2) = dF(z)/dz is the
naturally to the introduction of related concepts, namely the Jacobian matrix of the vector field.
o—w inversion and the time scale heterogeneity along invariant L€t V() = V(t.zo,Vo) be the solution of the skew-product
manifolds. The structure of invariant manifolds can be fruitfully SyStem (egs 1 and 3) starting frari=0) = vo € T, The formal
analyzed by introducing the Poinéapejected system associ- ~ Selution of eq 3 can be expressed as
ated with the original model. This is presented in section 4 "
together with the detailed analysis of the local bifurcations of V(t) = Vv(t,zo,Vo) = ¢;(Zo)Vo (4)
the points-at-infinity for the Semenov model. Compactification
methods are also applied to another prototypical model for
explosions, the isothermal chain-branching model, for detecting . ; . o ,
the bifurcations influencing invariant manifold structure. Finally, An invariant manifold7/’for eq 1 is linearly Stab,@,'f’ for
section 5 addresses some practical issues connected wittfY 20 € 7a@nd Vo € T, the vectorv(t,zo,vo) satisfies the
explosive kinetics and comments on the meaning of the following inequality:
geometric theory developed in the perspective of model
simplification and reduction.

whereg;(z) = d¢(2)/dz is the Jacobian matrix (differential) of
the phase flow.

1T, V2oVl < Cie ™ivll  Tt>0  (5)

2. Basic Definitions and Mathematical Tools for some positive constants; and ..
Equation 5 implies that the normal component of any vector

This section introduces the basic definitions and reviews some advected by the dynamics eqs 1 and 3 shrinks exponentia”y in

elementary properties of invariant manifoltfs. time.
Consider a generic dynamical system There is a strong relation between exponentially attracting
and linearly stable manifolds. Indeed, an invariant manifold for
dz _ F(2) 1) eq 1 is exponentially attracting if and only if it is linearly

dt stable34
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The definition of linear stability for invariant manifolds (henceforth, we consider exclusively this case), there is a
involves vector dynamics, so it is useful to elaborate further significant time scale separation in the neighborhood of the
for eq 3. By taking the scalar product of both the left- and the equilibrium. The eigenspace associated with the slow eigenvalue

right-hand sides of eq 3 witla(t), one obtains (A= —1) is given byEie ={v = (v1, v2)|vofvy = 6 — €}; the
5 . fast eigenspace (associated wifh= —e~19) is given byEfZeq
diiv@ll = 2(F*v,v) = 2 (F*v,v) ||v||2 (6) ={v = (v, vo)|vr2 = 0}. It is easy to verify .thgt'the mgni-
dt [Iv]|? fold 7% = {x|ly = 0, X € [X, «)} (i.e., the semi-infinite portion
of the x-axis starting fromx = x; = —1/8) is an invariant
where ¢,w) = =_; vnwy is the scalar product for vectors in  manifold for the system. Unless otherwise specified, wedset
R". Equation 6 can be formally solved to obtain = 1, because all the characteristic features of the system can
o be explored by letting the other parameterand § vary.
V()] = eIy )| RV (7 Moreover, we consider exclusively the caséd > 10, which

corresponds to more than 1 order of magnitude in the time scale
whereV is the unit vector spanning Equation 7 describes the  separation at equilibrium (0, 0). This implies for the slow

evolution of vector norms by means of the stretching rate( eigenspacE§ ={v=(v1, v2)|vadvy =0 — € = €(dle — 1) =

~ - P . . eq

V) where F* is the Jacobian matrix of the vector fiell 0 = 1}, so that it forms an effectively constant angle of about
generating the dynamics. 7/4 with the x-axis for the parameter values considered.

Given a one-dimensional invariant manifold for eq 1, i.e., an
orbit for the flow ¢(2), two characteristic stretching rates can
be defined, associated with the evolution of tangential and
normal vectors.

The tangential stretching raig(z) at pointsz € 7/is defined

Figure 1A—D depicts the phase-space diagrams (collection
of different orbits) for some typical conditions. Panels A and B
refer to very small values of, for two different values of3,
ie., p = 0.31 (Figure 1A) ands = 0.21 (Figure 1B),
respectively, above and below the characteristic vitie=

as 1/448
w.(2) = (F*(2) &(2), &(2)) ze 9 (8) The phase-space diagrams A and B are typical of a nicely
‘ behaved system, possessing a global time scale separation
where& = F/||F|| is the unit vector tangent ta@/’ between slow and fast dynamical components so that all the

The normal stretching rate,(z) atz € 7/can be defined as  different orbits collapse onto a slow manifold (thick line a).
This type of slow manifold is an example of what we refer to

w(2=_ max (F2)A(2),nz) ze€ 7 (9) as a global slow manifold. Throughout this paragraph, we are
NeN,,||A[[=1 forced to make an intuitive use of the concepts of “global” and

o ) ) ) “generalized” slow manifolds that will be introduced and
by considering the maximum over all the possible unit vectors j|ustrated in the forthcoming sections.

A(z) normal to 7/’ at z. By increasinge, and keeping a significant time scale

separation at the equilibrium point, the phase-space diagram
changes dramatically. A4 = 5 x 1072 (Figure 1C,D), it is

Consider a dynamical system possessing (i) a unique stablehard to detect the development of a global slow manifold,
equilibrium pointzeq = 0 such that (i) the linearized dynamics  because there is an almost uniform distribution of orbits within
in the neighborhood dafeqis characterized by a significant time  the phase space, and no global attracting curve can be singled
scale separation in the eigenvalue spectrum. This is a typicalout, even if, close to the origin, a remnant of the finite-length
situation in which one expects that the slow manifold paradigm local slow manifold associated with the equilibrium point
would apply; i.e., there must exist a slow invariant attractive 7/2° | _still persists (Figure 1C). Actually, orbits starting from
manifold 7/, around which orbit dynamics is organized, so that large values of > 8 (Figure 1D) collapse onto theaxis, which
after a short transient (order of magnitude of the time scales effectively plays the role of a slow manifold, although such
associated with the fast dynamics) orbits collapse onfto direction is associated with the fast eigenspace.

However, this scenario may be more complex in nonlinear  The peculiar features of the phase-space diagrams shown in

systems. . o ) Figure 1C,D, when compared to those of Figure 1A,B, clearly
In order to learn from experience the qualitative behavior of gggest that, by varying the two controlling paramefeend

the class of systems satisfying the conditions, (i) and (ii), let us ¢ the dynamics undergoes a “bifurcation”, causing the blow-

first analyze in greater detail the qualitative features of orbit ;5 of the “global” slow manifold and the birth of a new kind

dynamics in the Semenov model, representing the dynamics ofof invariant structure (which will be referred to as a generalized
a first-order exothermic batch reaction-A product in a well- slow manifold), corresponding, in this case, to taxis.

stirred jacketed reactor

3. Global and Generalized Slow Manifolds

The global slow manifolds depicted in Figure 1 have been
obtained by applying the technique of material line advection

dax _ 1 — ok P . o anvE
G € A —x0) =€ f(xy) (MLA), borrowing it from the analysis of chaotic mixing
systems>36The MLA technique for slow manifold identifica-
(;_y = —yg(X) = g(xy) q(x) = exp/(L + ) tlon'|s briefly reweyved in Appendix A
t (10) Figure 2A,B reviews the geometric structure of the global

slow manifolds7/s for f = 0.31> *and§ = 0.21 < f5*, for
We let the model parametees 3, ando vary*” and focus on several values of. Specifically, a portion of//’s close tozeq=
the different kinds of geometric structures that may appear. (0, 0) is depicted.
The Semenov model possesses a unique stable equilibrium In both the caseg > * and f < [5*, we observe that, as
point zeq = (0, 0), and the eigenvalues of the Jacobian matrix increases (following the direction of the arrow in Figure 2A,B),
F*(Zeq at zeq are —1 and —e 1. Provided thate™10 > 1 the structure of the global slow manifold changes significantly
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Figure 1. Phase-space diagrams for Semenov modlet (1) in several typical cases. Whenever it exists, i.e., in cases A and B, the global slow
manifold has been depicted with a thick line (line a in the figures).A&) f* = 0.31,e = 1072 (B) 8 < f* = 0.21,e = 107* (C),(D) 8 = 0.31,

e=5x 1072

(A)12 (B)os
0.8

0.4

Figure 2. Global slow manifolds of the Semenov model o= 0.31
> B* (A) and g = 0.21 < 3* (B), for several values ot. (A) =
0.31. From top to bottom, in the direction of the arrow:= 1074,
103, 5x 1078102 2 x 1072 (B) f = 0.21. From top to bottom, in
the direction of the arrowe = 1075, 1074, 1073, 2 x 1073, 5 x 1072,

and seems to collapse onto tk@xis. This behavior suggests
that, by increasing the value ef(for a fixed value off3), we
are getting closer to the bifurcation point at which the global
slow manifold blows up and theaxis starts to play the role of
a weakly attracting invariant structure (see Figure 1Dfcr
0.31 ande =5 x 1079).

MLA is a very simple and powerful numerical technique for
the identification and the computation of one-dimensional slow

manifolds, which is based on the idea that a (generalized/global)

slow manifold is geometrically represented by the graph of an
exponentially attracting, connected, and infinitely extended
invariant curve. The infinite extension of the geometric invariant

templates is further elaborated in section 4.2 in connection with

the role of points-at-infinity and coincides with the analysis
presented by Davis and Skodje in ref 22. MLA overcomes all
the intrisic limitations of “local” techniques (e.g., ILDM) on

(A)1 (B)os

0.8 regioncc
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> 4 >
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X X

Figure 3. ILDM-approximated manifold (continuous line (a)) and
global slow manifold obtained by MLA (dashed curve (b)) of the
Semenov model for (A§ = 0.31> 8* ¢ = 102and (B)f =0.21<

B*, € = 2 x 1073 Region cc, bounded by dotted-line curves, is
characterized by complex conjugate eigenvalues of the Jacobian matrix.

eigenvalues appear (region cc, delimited by dotted-line curves).
A similar situation occurs in the analysis of the 3-D enzyme
inhibition kinetics (EIK) reported in the paper “Global analysis
of Enzyme Inhibition Kinetics” by Roussel and Fragéihe
authors observe that, for some values of the parameters, it is
possible to identify a region in the phase space characterized
by a pair of complex conjugate eigenvalues of the Jacobian
matrix. Therefore, by making use of local analysis based on
the properties of the Jacobian matrix, the authors draw the
conclusion that the region of complex eigenvalues (region cc)
breaks the 1-D slow manifold into two distinct pieces and that,
inside the region of complex conjugate eigenvalues, the 1-D
slow manifold is undefined. The analysis of the Semenov model
and the technique of MLA reveal that such a conclusion for
the EIK model, based exclusively on local analysis, may be

the basis of the local eigenvalues/eigenvectors structure, which®"ONeous.

face significant problems when regions of complex conjugate

eigenvalues occur in the phase space.

Consider, for example, in Figure 3A,B, the approximated slow
manifold obtained by ILDM (continuous line) and the global
slow manifold obtained by MLA (dashed line). The ILDM-
approximated slow manifold consists of two disconnected

Moreover, the left-hand branch, starting from the equilibrium
point, results in a nonmonotonic curve, thus violating the
invariance property (because, by the nature of the model
equation (10), the concentration along any invariant manifold
should be a monotonically decreasing function of time, or
equivalently, it should be a monotonically increasing function

branches separated by the region where complex conjugateof any curvilinear abscissa such thas = 0 at the equilibrium
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point). Further discussion on the ILDM approximation is TABLE 1. a/e-Lyapunov Numbers along the Invariant

developed in section 5. Manifolds of a Linear Autonomous Two-Dimensional System
3.1. Global Slow Manifold, a—w Inversion and Hetero- manifold A” A®
gene_it_y. The aim of this sectio_n is to introduce a geometric s e 1 s> 1
definition of global slow manifolds and to present related gt A< 1 A< 1
concepts, namely the phenomenonoefw inversion and the V4 Aas>1 st <1

guantification of time scale heterogeneity along invariant ) )
manifolds. To simplify the notation, we develop the theory for n9)- The analysis of Table 1 shows that the slow manifeld
two-dimensiond dynamical systems (as the Semenov model) ° iS characterized by/w-Lyapunov numbers both greater than
possessing a unique globally attracting equilibrium point. The 1. Conversely, the fast manifold is characterized by Lyapunov
extension to higher dimensional systems is developed in full numbers both strictly smaller than 1; for any other invariant

detail in ref 21. The main difference betweer= 2 andn > 2 manifold, A° > 1 andA® < 1. Indeed, for any//’= 7/5, 7/",
is that in the latter case the normal subspbigat any pointz the scaling fort — « (i.e., close to the equilibriunzeg) of
of the phase space is no longer one-dimensional tangential vector norms is controlled Wy, and the normal
. e /
Consider an invariant one-dimensional manifatdan orbit vi(?ttors decay as™€"; for t — —oo, tangential vectors grow as
with starting pointz), and let e”** and normal vectors as €. _ S
Therefore, the slow invariant manifold”’s can be discrimi-
— [ i i for 7/for its
n(2) = II 2\ N neN nated. from all t.he other invariant mgnlfoldﬁ/ or 7/’ .
(2) ¢1(Z)[¢t( ) ol 0=""% peculiar behavior fot — —oo, as it is the unique invariant
(D) =¢'@c CeC (12) manifold for whichA* > 1, whereas the fast manifold’f is
- %t 0 z

the only invariant manifold for whiclA® < 1.

This result can be readily extended to a nonlinear system (eq
1) possessing a unique globally attracting equilibrium paigt
(henceforth, we will consider exclusively this case, and there-
fore, this specification will be omitted). In the extension to
nonlinear systems, it is convenient to view any one-dimensional
invariant manifold as a curve possessing the equilibrium point
Zeq @s one of its endpoints. Therefore, the slow manifeitt

Equation 12 expresses the evolution of normal and tangent
vectors along the manifold/! Because the normal sub-bundle
is not invariant, the normal projectdi,, at the image point
¢i(2) is used in order to obtain the normal componei(t) at

the image point. Let us introduce the quantities

“ = [im W ze W defined for the linear system considered above could be viewed
e log|[c(2)]] as the union of two distinct slow manifoldg;® = {z|z = &e",
Ee[0, o)}, 75 ={z|z = &, & € (—, 0]}. Although this
w_ . loglin(2)Il distincti 2 o2 ! o
=lim ———— ze ¥ (13) istinction seems rather artificial for linear systems, it is a
=== log||c(2)|| convenient one for a proper definition of slow manifolds in
nonlinear dynamics.
The quantitiesA* and A® are referred to as the Lyapunov We are now able to formalize the geometric definitions for
o- and w-numbers of the manifold”. The definitions ofA* slow/fast manifolds and global slow/fast manifolds.

and A“ adopted here are similar to the definition of the quasi-  Given the dynamical system eq 1, a global 1-D slow manifold
Lyapunov numbers given by Fenict#lBy using the same s an invariant, exponentially attracting (i.e., linearly stable) one-

technique applied by Fenich#pne can prove thak® andA® dimensional manifold for whictA* > 1 andA® > 1. A global
do not depend on the starting pointe 7/ and are intrinsic 1-D fast manifold is an invariant, exponentially attracting one-
properties associated with the manifold dimensional manifold for whiclA* < 1 andA® < 1.

For dynamical systems possessing a unique asymptotically From the analysis of linear systems, we know that the peculiar
stable equilibrium pointe, it is clear that the behavior far— feature of a slow manifold is essentially the vector scaling for

oo coincides with the behavior of the system in the neighborhood t — — (quantified by thea-Lyapunov numbeA* > 1) and

of zeq, and therefore, the-Lyapunov number for any invariant  a fast manifold is characterized by the vector scaling for
manifold 7//can be shown to be expressed as the ratio of the (quantified by thew-Lyapunov numbeA® < 1).

eigenvalues of the Jacobian matfx(zeg). In a similar way, For this reason, it is convenient to give another, weaker
the a-Lyapunov number accounts for the normal-to-tangent definition of slow/fast manifolds, exclusively based on their
stretching behavior of a vector at infinity, along the manifold. asymptotic backward/forward behavior in time.

In order to show how thev/w-Lyapunov numbers can be Given the dynamical system eq 1, a generalized 1-D slow
used in defining the properties of the slow manifolds, let us manifold is an invariant, exponentially attracting one-dimen-
first consider the simple case of a linear two-dimensional sional manifold for whichA* > 1. A generalized 1-D fast
autonomous systemzidit = Az, associated with a constant manifold is an invariant, exponentially attracting one-dimen-
matrix A, possessing a pair of real and negative eigenvalues sional manifold for whichA® < 1.

(—As, —Af), with As < A, Obviously, a global slow (fast) manifold ia fortiori a

Let Es and Ef be the slow and fast eigenspaces associated generalized slow (fast) manifold, but the opposite does not hold.

with the eigenvalues-1s and —Af, respectively, and spanned For example, let us consider a generalized slow manifeid

by the unit vectore® and€’. The slow and fast manifoldg/’s and suppose that® < 1. This means that the dynamics along
and 7/ can be thus defined a&’" = {z|z = &€, & € (—o, ®)}, 7/ in the neighborhood oz, behaves as on a local fast
wherer = s, f. Theo/w-Lyapunov numbers om’s and 7//f and manifold. Actually, in this case, the invariant manifold'is a

on any other invariant manifold”’ (which can be viewed as  generalized slow manifold and a generalized fast manifold, at
the union of the forward and backward trajectories starting at the same time. We refer to this particular situation as.am

any pointz not belonging either to7’s or to 7/) are reviewetf inversion. Thea—w inversion cannot occur in linear systems
in Table 1 (note: it is important to observe that for this class but is frequent in nonlinear models, in association with local
of systems any invariant manifold is also exponentially attract- bifurcations at the points-at-infinity (see section 4).
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(A) g

r(x)

Figure 4. Stretching ratiar(x) vs x along the global slow manifolds. (A = 0.31> f*. Line a refers toe = 1074, line b toe = 1073, and line
ctoe =102 (B) 8 = 0.21 < p*. This figure depicts the absolute valuergk), because the tangential stretching rate may attain both negative and
positive values. Line a refers to= 1075, line b toe = 1074, line c toe = 1073, line d toe = 5 x 1073 The dotted line indicates = 1.

The phenomenon ai—w-inversion for a generalized slow is an invariant manifold characterized by tangential and normal
manifold can be easily understood by analyzing the local stretching ratea).(x) = —¢ 10 andw,(X) = —q(X), respectively.
properties in the evolution of normal and tangential vectors along Becausew,(x) < 0 at each point of the manifold7/" is
the manifold. This can be done by introducing the pointwise linearly stable (i.e., exponentially attracting). Moreover, it is

stretching ratiar(2) characterized by the following/w-Lyapunov number
w,(2) —q(0
@) = (14) ar="30_ 1 (15)
w/(2) —€ 0 €0
The casew,(z) > 0 is not relevant to our analysis, because we —q() 1
are always assuming that” is an exponentially attracting A“=?=T= >1fore > de (16)
manifold. If r(z) > 1 andw.(z) < 0, normal vectors shrink at —€ 0 €0 <1fore> oe ¥

z faster than tangential vectors. Converselyr(#€) < 1 and

w-(z) < 0, vector dynamics tangent to the manifold is faster

than normal vector shrinking. i{(z) < 0, thenw.(z) > 0; that

is, tangential vectors stretch exponentially and normal vectors B
i i i i i 0,8) =o0e 17)

contract. Different diagrams illustrating the behavior of the €clOy

pointwise stretching ratio(x) and the occurrence ofi—w

inversion for the Semenov model are reported in section 3.2 3.2.1. Discussion for < ¢.. Fore < ¢, the manifoldV/’x+ is

Therefore, there exists a critical value @fnamelyec(0,5)
defined as

(see Figure 4A,B). a global fast manifold because bof? < 1 andA® < 1 hold.
For generic nonlinear systems, a generalized (or global) one-Moreover, fore < €. at each point on the manifold;; < 0 and
dimensional slow manifold’”’is heterogeneous if(z) is not r(x) = qX)/(e 10) < g(eo)/(e720) = efi(e™16) < 1; i.e.,

constant forz € 7/ A generalized (or global) one-dimensional tangential vectors shrink faster than normal vectors and the

slow manifold 7/is inverting if there is a point* € 7/and an global fast manifold is noninverting.

open neighborhootl} of z*, such thatr(z) < 1 forz € 7/N This case corresponds to the phase-space diagrams reported

Uy in Figure 1A,B, showing the existence of a monotonic global
From the physical point of view, the occurrence of inversion, slow manifold 7/;° for both caseg > * (Figure 1A) andB <

i.e., the existence within a global slow manifold of regions p* (Figure 1B). Similarly, all the global slow manifolds shown

wherer(z) < 1, is the indicator of some local “pathology” in  in Figure 2A (3 > £*) and Figure 2B § < *) correspond to

the dynamical behavior of the system negarNamely, although values ofe andf such thate < (6,5).

7/is globally attracting, there are portions of (the inverting The dynamical properties along the global slow manifold for

regions) in which nearby orbits to the manifold are almost e < ¢ are depicted in Figure 4A,B for values Gfabove and

neutrally attracted; i.e., they are practically parallel to the slow below the critical valugg* = 1/4.

manifold itself. This is a consequence of the fact that normal  Figure 4A shows the stretching ratg) vs x along the global

perturbations decay more slowly than tangential ones, and theslow manifold 7/;° (computed by MLA) forp = 0.31> g*

overall phase-space structure within an inverting region appearsand several values ef< .. We first observe from egs 15 and

as a bundle of parallel orbits to the slow manifold. This situation 16 that (i) forx — oo, r(x) — A®* > 1 and forx — 0, r(x) — A®

is clearly depicted in Figures 1B and 2B. The occurrence of > 1, so that the invariant manifolds are global slow manifolds,

inversion has significant implications in model reduction, as and (ii) thea-Lyapunov number decreases for increasing values

discussed in section 5.2, and this represents the main motivatiorof € in such a way tha® — 1 for e — ¢ (for 6 = 1, 8 =

for the introduction of this concept. 0.31, the critical value of is e = 3.97 x 1079). Moreover, for
By definition, a generalized slow manifold, for whietr < very small values of, the global slow manifold is noninverting
1, is inverting, becausg(z) < 1 in the neighborhood oOfeq (curve a and b in Figure 4A); for = 1072, there exists an

However, even a global slow manifold’may be inverting at intermediate region along the manifold at whicfx) < 1
points other tharzeq, The occurrence of inversion influences (inversion).

the global dynamics around”, In the next section, we apply A similar situation occurs fof = 0.21 < f* ande < ¢, as

the concepts introduced above to the analysis of slow/fast depicted in Figure 4Bin this case, the critical value is =

manifolds of the Semenov model. 8.55 x 10 3—although the dynamical picture of vector-norm
3.2. Slow/Fast Manifolds,o—w Inversion, and Heteroge- dynamics along the global slow manifold is slightly more

neity in the Semenov Model.Let us consider the Semenov  complex. First, inversion occurs for any value of< .
model. For this system, the manifold,” = {z]y = 0, x = 0} Moreover, curves a and b, corresponding te 1075 and 1G4,
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Figure 5. Log—normal plot ofe. as a function of3 for 6 = 1.

04 05

respectively, show the occurrence of positive tangential stretch-
ing rates along the global slow manifold}>.

3.2.2. Discussion foe > e.. Fore > ¢4(9,3), the manifold
7/} is a generalized slow manifold\¢ > 1) exhibitinga—a
inversion (becausA® < 1) and is inverting in the interval [O,
xX*), X* = log(e 20)/(1 — B log(e 1)) because&(x) < 1 forx €
[0, x¥) and r(x) > 1 for x € (x*, ). This case corresponds to

J. Phys. Chem. A, Vol. 110, No. 50, 20063453

(18)

, Which is a homeomorphism, the inverse transformation of
which is given byz, = uy/[1 — =2, ud¥2 h=1, 2.

Under this coordinate chang®? is mapped onto the two-
dimensional unit sphergz = {u = (uy, Up)|ui?2 + W2 < 1},
and the behavior on the boundady; = {uju? + u? = 1}
corresponds to the behavior at infinity for eq 1.

Let F; andF> be the entries of the vector fiel associated
with eq 1. The Poincéarprojected system associated with eq 1
is given by

2

kZ‘Uka]

du,,
— h=1,2
dt

2
=1 - Y ud"F, - u,
kZ (29)

the phase-space diagrams reported in Figure 1C,D, showing theThe introduction of the Poincarerojected system eq 19

blow-up of the global slow manifold and the birth of the
generalized slow manifold7}" that, close to the equilibrium
point zeq, is tangent to the fast eigendirection.

Therefore, we conclude that the basic criterion to distinguish
between the two completely different dynamical behaviors of
the Semenov system exhibited in Figure 1A,B and Figure 1C,D
is based on the comparison betwee(for fixed values ofd
andf) and the critical value(d,3). The behavior ok; as a
function of  for 6 = 1 is reported in Figure 5.

In the next section, by making use of the Poirigar@ected
system, we show that the existence of global (or generalized)
slow manifolds and their properties are controlled by a tran-
scritical bifurcation of the point-at-infinity occurring at= ec-

(0,5).

4. PoincareProjected System and Bifurcations of
Points-at-Infinity

A (generalized/global) slow manifold is geometrically rep-

resented by the graph of an exponentially attracting, connected,

and infinitely extended invariant curve characterizeddsyand
o-Lyapunov numbers greater than one. ®akyapunov number
accounts for the normal-to-tangent stretching behavior of a
vector at infinity, i.e., far from the equilibrium point, along the
manifold. In order to investigate this behavior at infinity, it is
extremely useful to make use of a compactificatfoof the
phase space, i.e., the one-to-one mapping of the phase spa
onto a compact domain.

The idea of analyzing the global behavior of a planar
dynamical system by using a stereographic projection of the
sphere onto the plane is due to Bendix$bA.more convenient
approach for studying the behavior of trajectories “at infinity”
is to use the so-called Poin¢asphere, where we project from
the center of the unit sphere®(= {(X, Y, Z2) € R¥X% + Y? +
Z2 = 1}) onto the &, y) plane, tangent to? at either the north
or the south pole. This type of central projection has the
advantage that the critical points-at-infinity are spread out along
the equator of the Poincaephere.

Therefore, the structure and properties of invariant manifolds
can be further addressed by introducing the Poinpasgected
systend?4° associated with eq 1, by defining the following
coordinate transformation (throughout this section, we consider
two-dimensional systems):

c

(henceforth indicated as Pp-system, for short) permits the
analysis of the global behavior of eq 1 in terms of the properties
of the equilibrium points-at-infinity. In fact, let us consider an
autonomous linear systenz/dt = Az where the matrixA
possesses two real and distinct eigenvalues, the unit eigenvectors
of which aree, (||e)]] = 1), h = 1, 2. Elementary algebraic
manipulations show that the Pp-system possesses five equilib-
rium points: (i) the equilibrium pointueg = 0 = (0, 0)
corresponding to the unique equilibrium pomt = O of the
original system and (ii) four equilibrium points-at-infinit;g’ai

= +e,, h =1, 2. Therefore, the equilibrium points-at-infinity
correspond to the invariant directions associated with the one-
dimensional eigenmanifolds of the system. This observation can
be extended to nonlinear systems and leads to a simple
geometric definition of global/generalized slow/fast manifolds.

For a dynamical system possessing a unique globally attract-
ing equilibrium pointzeq = 0, global/generalized one-dimen-
sional invariant manifolds are the heteroclinic orbits of the Pp-
system connectingle; = 0 to equilibrium points-at-infinity
u°e°q, such that thex/w-Lyapunov numberg\® and A* possess
prescribed (and specific) properties (as discussed in section 3.1).
This is the geometric picture discussed by Davis and Sk&dje.

The concept of the global/generalized invariant manifolds as
heteroclinic orbits connecting, to a point-at-infinity permits
a unified view of thea/w-Lyapunov numbers, defined in section
3.1. Indeed, as\“ expresses the local scaling of the normal-
{o-tangent vector norms along a given manifold in the
neighborhood ofeq the a-Lyapunov numbeA® accounts for
the local scaling of the same quantity in the neighborhood of
the point-at-infinity along the heteroclinic connection.

4.1. Bifurcations and Manifold Structure in the Semenov
Model. The introduction of the Pp-system allows us to address
the global qualitative properties of the Semenov model and its
global changes in the invariant manifold structure viewed as
local bifurcations associated with the points-at-infinity. This
approach is particularly simple for the Semenov model ax for
— o, g(x) — €, and therefore, the behavior at infinity is
described by the linear systera/dt = A.z, where

(20)

The matrixA., admits as eigenvalug§ = —e~%0 and1; =
—el, the eigenvectors of which agf = (1, 0) ande = (C,
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Figure 7. Transcritical bifurcation occurring in the Semenov model
at the point-at-infinity § = 0.21, 6 = 1), by consideringe as a
parameter. Solid lines are the stable branches, dotted lines the unstable
branches.
and, by considering as the bifurcation parameter, we find that
the transcritical bifurcation occurs at = ¢, = e ¢, in
agreement with eq 17.
C (e — ¢)), respectively, whereC is a normalization The trans_critiqal bifurcgtion at inf.inity contrqls the structure
constantC = [1 + (e %6 — €)2-Y2 The equilibrium points- of the slow invariant manifolds and is responsible for the blow-

at-infinity of the Pp-system are associated with the eigendirec- UP Of the global slow manifold in the first quadrant of thg-

tions of A It follows that the Pp-system admits two equilibrium ~ Plane, already observed in section 3. o

points-at-infinity, uy, ; = € andug, ,= € within the semi- . Indeed{ fore < €o the .pomt-at-lnﬂnltyueqy2 is a §qdd|e and

circleu; > 0. is attracting ond/,. This means that any infinitely long
The pointueq = 0 is globally attracting, and the two points- mater?al Ii_ne (in the Pp-system, this corresponds simp‘I%/ to a

at-infinity ug, ; andug, ,are unstable for the Pp-system defined Material line connectingle, = 0 to a generic point ofd

on the Poincareircle. /3. They are either saddles or unstable With u1 > 0) is attracted toward the global slow manifold

sources. To decide it, consider the dynamics of the Pp-system€Presented by the invariant heteroclinic orbit connectigg

restricted to the equator of the Poincamghere, i.e., on the 0 Ug, (curve 7/ connectingPo and P, in Figure 6A).

boundarya /5 = { (us, Up)|us2 + w2 = 1}, which is an invariant Conversely, thex-axis (or, more precisely, the non-negative

Figure 6. Pictorial representation of the points-at-infinity, their stability,
and the structure of slow and fast manifolds for the Semenov model:
(A) € < € (B) € > €. The dashed line shows the boundary of the
admissible phase spage= x. = —1/3. PointsP; andP, correspond to

the equilibrium points-at-infinityug, ; (or 67) and ug,, (or 65),
respectively. The point, 0) in thex,y-plane is represented by the
point P, on 8.3,

set for the Pp-system and along whigh= cos#, u, = sin 6, portion of thex-axis, corresponding to the manifol?zi’/lf in
6 € [0, 2n]. Figure 6A connectind®, and Py) is a global fast manifold of
By enforcing eq 19, it follows that the dynamics in the angular the system, connectingeq to the unstable point-at-infinity
variabled on 3 /; satisfies the equation Ugqx The dynamical properties along the global slow and fast
manifolds fore < ¢; have been analyzed in detail in section
do  Ul, — u,u, ) ) 3.1 (Figure 4A,B). . ' .
=———— =AU — AL+ (A — AjYugl, For e > ¢, the global structure of the invariant manifolds

d u2iu? : -
1 2 changes dramatically. The global slow manifold blows up,

because at infinityu,, , moves into the fourth quadrant and

wheret, = duy/dt. The substitution in eq 21 of the expression Pecomes unstable, and correspondinglf;, becomes stable

1 e . .
for A = A, eq 20, deriving from the behavior at infinity of the O 8/2 after the transcritical bifurcation. .
Semenov model, yields The exchange of stability betweeut,; and ug,, corre-

sponds to an exchange of stability between the global slow

(21)

do ~ _ - _ manifold 7/ (defined fore < €c) and 7/4". Indeed, fore > e,
- GO) = —e e’ sin’ 6 + (¢ 0 — €¥) sin 6 cos6 Uz, is a saddle and is attracting @' and the positive part
(22) of the x-axis is a heteroclinic orbit connectingq to the point-
at-infinity u"e"q,1 characterized by the Lyapunov-numbé$ <
From eq 22, it follows that there are two equilibrium poiréts, 1 andA* > 1. Therefore, fok > ¢, it behaves as the unique
= 0 (associated withug,,) and 6; = arctan(e™d — ¢) generalized slow manifold defined in the physically admissible
(associated withig, ,). region of the phase space.
Fore < ec = e 10, 67 is unstablep} > 0 is stable or- /3. Figure 8A,B shows the manifold structures for the Semenov

For ¢ > , 05 moves into the fourth quadrant and loses Modelon the Pomcarerclez forf=021,6=1e=10"<

stability, andd}; becomes stable, as depicted in Figure 6. < (Figure A), ande = 107° > «; (Figure B). Although very
Therefore, the analysis of the Pp-system restricted to the C/0S€ t0P1, the pointP, (corresponding taie,j) is indeed

equator of the Poincarsphere eq 22 clearly shows that, for dlfferent fromP;. Global an(_j generalized slow manifolds are

= ¢, a transcritical bifurcatiof occurs at infinity in the obtained by the MLA technique. '

Semenov model, corresponding to the exchange of stability ~FOr the sake of comple_tene;s,sFlgure 8A,B also shows the

between the two equilibrium points-at-infinity; (associated ~ Pehavior of the heteroclinic orbit’y’ connectinge (point Po)

with ug, ) and 6; (associated withug, ). The bifurcation to the point-at-infinityPs = (0, =1) (corresponding to the point

diagram for8 = 0.21 ando = 1 is reported in Figure 7. e —*) in thexy-plane) and representing the unique global

Actually, the bifurcation locus in the parameter space is slow manifold in the_nonphysically admissible region (negative
expresséd by the equation reactant concentrations) of the phase space.

The blow-up of a global slow manifold for > ¢. makes
_ _ particularly evident the occurrence of finite-length slow mani-
b(o,fe)=€ "6 —e=0 (23) folds associated with the local behavior of the system close to
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Figure 8. Manifold structure of the Semenov mod@l € 0.21,0 =
1) on the Poincdreircle: (A) e = 1074 (B) ¢ = 10°2. The thicker
dotted line in the second and third quadrants is the boundary of the
phase spacg. = —1/8. The dotted lines depict typical orbits.
Zeq This phenomenon can be appreciated by analyzing the
phase-space diagram in tkRg-plane reported in Figure 1 (
= 0.31,e =5 x 1072 > ¢y as well as the different orbits in
the first quadrant of the Poincamdrcle obtained from the
numerical integration of the Pp-system associated to the
Semenov model fof = 0.21 ande = 102 > ¢, (see Figure
8B). The classification of these finite-length slow manifolds is
addressed in the next subsection.

4.2. Transient and Hartman—Grobman Slow Manifolds.
The definition of slow/fast manifolds as heteroclinic orbits
connecting zeq to equilibrium points-at-infinity is still not
exhaustive, and a further categorization is needed to accoun
for what can occur in nonlinear systems. To show this, consider
again the Semenov model.

This model possesses the characteristic property that the phas

space does not coincide wii?, because the half-plane to the
left of x. = —1/8 corresponds to negative temperatures. The
admissible phase space is therefore a domairRdfwith
boundary.

The invariant manifold7/ = {z|ly = 0, X € [X., ©)} splits
into two distinct submanifolds (see Figure 8): a heteroclinic
orbit connecting point$, and P; (representing a global fast
manifold 7/} = 7/ for ¢ < €. and a generalized slow
manifold 7/, for € > ¢¢) and the “finite-length” fast manifold
f//{f ={(x y)ly=0,x e [—1/3, 0]} connectingP, to the point
on the boundar{?,. The occurrence of the finite-length manifold
‘//{f in the Semenov model leads to the definition of proper and
transient slow/fast manifolds.

A proper (global or generalized) slow manifold is geo-
metrically represented by the graph of an exponentially attract-
ing, connected, and infinitely extended invariant curve. It
represents the invariant exponentially attracting heteroclinic
connection between the equilibrium poing; and a point-at-
infinity for which A* > 1 (A® < 1 for fast manifolds). In the
case of a proper global slow (fast) manifold, the further condition
A® > 1 (A* < 1 for fast manifolds) holds. Invariance and
infinite extension imply that a proper invariant manifold is
actually properly invariant; i.e., the image of the manifold
through the phase flow concides with the manifold itself,
(77) = 9/ for any t. Moreover, the definition of proper
manifolds as heteroclinic connections between the equilibrium
point, and a given saddle point-at-infinity ensures their unique-
ness.

A transient slow (fast) one-dimensional manifold’ is a
finite-length invariant exponentially attracting manifold along
which r(z) > 1 (r(z2) < 1 for fast manifolds) forz € 7
Therefore, a transient manifold is not properly invariant, because
o 7) C 7/for t > 0, and liMm—w( 7/) = Zeq This is the reason
of the wording “transient” for this class of invariant geometric
structures. Moreover, although proper invariant manifolds may
be inverting, as extensively addressed in section 3 for the
Semenov model, transient manifolds are, by definition, nonin-
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verting, and this is the reason their occurrence may be significant
in the local behavior of a dynamical system close to the
equilibrium pointzeq (see section 5).

Transient manifolds may originate from two distinct geometric/
dynamical phenomena: either (i) they are connections between
Zegand a point on the boundary (suchaé(gf depicted in Figure
8), or (ii) they are local stable/unstable manifolds associated
with the hyperbolic equilibrium pointeg such as the finite-
length slow manifolds occurring in the Semenov modeldor
> ¢, which are revealed by the coalescence of orbits as depicted
in Figure 1C and Figure 8B. (It is important to stress once again
that we are considering dynamical systems possessing a unique,
globally attracting equilibrium point. More complex phenom-
enologies may arise for systems possessing multiple equilibrium
points or stable oscillatory behaviors.)

In a two-dimensional system, a transient slow manifold close
t0 Zeqis just a local slow manifold”7}® .., which is tangent to
the slow eigenspace af, This kind of transient manifold can
be referred to as the HartmaGrobman manifold, due to the
implications of the HartmanGrobman theorer?? It is clear
from the definition that the HartmarGrobman slow manifold
does not need to be unique, as there exists different ways of
constructing them; certain conditions are maintained: (i) they
are tangent to the slow eigenspace at the equilibrium eint

Ynd (i) they are noninverting.

A simple way for constructing the transient Hartman
Grobman slow manifold for the Semenov model is presented

fhn Appendix B.

To sum up, local bifurcations at the point-at-infinity of the
Pp-system provide a simple way for understanding the global
behavior and the nature of the slow/fast invariant manifolds.

In the Semenov model for thermal explosions, a qualitative
change in the manifold structure occurs as a consequence of a
transcritical bifurcation at infinity. This bifurcation leads to the
transition from a global slow manifold (defined fer< ¢.) to
a generalized slow manifold (far > ¢) that close tozeq is
tangent to the fast eigenspace of the unique equilibrium point.
In all those cases for which either a global slow manifold does
not exist or still exists, it is characterized by inversion close to
Zeg the local behavior close to the equilibrium point is controlled
by the occurrence of a HartmaGrobman slow manifold,
which is a finite arc representing the geometric memory of the
dynamical behavior prevailing close &g In this case, the
transient finite-length HartmanGrobman may play an impor-
tant role in connection with the application of model reduction
methods, especially if one is interested in finite portions of the
phase space close to the equilibrium, as discussed in section
5.2.

4.3. Other Models of Combustion Kinetics.The occurrence
of local bifurcation at infinity modifying the structure of the
invariant slow manifolds is not a peculiar property of the
Semenov model, but it is present in other combustion and
explosive systems. In the Semenov model, the transcritical
bifurcation characterizing the slow-manifold structure is a
consequence of the interplay between the Arrhenius monotonic
and saturating behavior of the kinetic rate coefficients and the
heat losses at the reactor walls. It is therefore highly plausible
that similar local bifurcations at infinity may occur also for
higher dimensional combustion systems characterized by an
Arrhenius-type functional dependence of the rate coefficients
on temperature. What is remarkable is that qualitatively similar
features may occur for other, completely different models of
combustion kinetics and explosions. This is the case of the
classical chain-branching model for combustion and explosions
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in isothermal conditions, which is characterized by a quadratic 4, (y) = —ye™* <0 wy)=-1-y<0
nonlinearity. This reflects into a quadratic nonlinearity in the  * ! 1+
associated Pp-system, and the Semenov model behaves at rly) = y (26)

s e . -1
infinity as a linear system.

We analyze a simplified kinetic model usually adopted to o o«
illustrate how chain-branching systems may exhibit explosive AT =limr(y) <1 A= limr(y)>1 (27)
behaviors? Let R, P, and C be the reactant, the product, and y—0 y—ee
the chain carrier, respectively. The initiation, propagation, and
termination steps are, respectively; RC, C+ R— P + aC,
and C— P, wherea is the branching constant, equal to unity
for straight-chain reactions.
By indicating withk;, kp, andk; 'ghe rate constants of the three early unstable because,(y) = —1 — y > 0 for y <y_l.
itaerfitsa’r \;Vs read the rate equations for the reactant and chain A complete picture of the structure and properties of invariant
manifolds can be obtained by analyzing the Pp-system associated
with the chain-branching model. Equilibria at infinity for the
dCR_ = 2 degree polynomial system eq 25 occur at the paifits
T = ke~ krCe m gree poly y q25¢  paify
T = (u1, Up) on the equator of the Poincasphered/; and
satisfy the equation

This implies that(//§+ is a properly invariant exponentially
attracting generalized slow manifold tangent to the fast eigen-
direction at the equilibrium poinkeq for each value of the
branching constant. Conversely, the manifold’/; is lin-

dc.

ar kicg + (o — 1)kCrCc — ke (24) .
U Qy(Ug,Up) — U Po(Ug,Up) = UgUp[uy(ar — L)~ + )] =( 208)
where cr, Cc are molar concentrations. By introducing the
following dimensionless variables and parameterscr/cg, y or, equivalently at polar anglesand6 + =, are solutions of
= ccko/ki, t = kiT, € = kil(ky/cg), andy = ki/(ky/cg), wherecg the equation

is a reference reactant concentration, one finds that the rate

equations eq 24 attain the form G(6) = cosh Q,(cosb,sinf) — sinf P,(cosh,sin f)
dx = cosf sinf [(a — 1)e ' cosh + sinf] =0
& = Xy = Py + Plxy) o= D 179 9)
d _ . e .
ay ¢ 1[x + (o — Lxy — yy] = Q,(xy) + Qy(xY) Th.erefore-, fgrq =1, the systgm eq 25 possesses EIX qulh_bnum
dt (25) points-at-infinity corresponding to polar anglés= 0, 65 =

7, 05 = 7/2, 6, = 32, 6, = arctanf), andds = arctanf) +
7, whered = (1 — a)e L.

The flow on &fi is counterclockwise at points correspond-
ing to polar angle® whereG(6) > 0 and is clockwise at points
corresponding to polar angléswhereG(6) < 0. Equilibrium
points-at-infinity and the flow on the equator of the Poiricare
sphered. 3! are depicted in Figure 9 for the two different cases
0 > 0 (left panel) and) < 0 (right panel).

Ford > 0 (i.e.,a < 1), pointsP; andP; are stable or&l/é1
(and are saddle nodes on the Poifcairele -/3), and Ps is
unstable onafél (and is an improper unstable node o).
Because the chain-branching model is a second-degree poly-
nomial system, the behavior of the Pp-system near the antipodal
equilibrium pointsP,, P4, andPg is topologically equivalent to
the behavior neaP;, P3, and Ps, respectively, with reversed
. ! ; - flow direction.

v ¢}, and the fast eigenspace (associated with —ye ) By decreasing the value 6f we find that the poinPs moves
is E, = {v = (vy, v2)lva = O}. Therefore, system properties  toward pointP;, it collapses orP; for 8 = 0, and foré < 0, Ps
close to the equilibrium pointeq are unaffected by the value  moves into the fourth quadrant and becomes an unstable

wherePi(xy) = —X, Pa(xy) = —xy, Qu(xy) = ¢ {x — py),
andQx(xy) = € Ha — 1)xy.

If € is a small parameter (which physically means that the
initiation is slower than the propagation step), the chain-
branching model is readily expressed in a singularly perturbed
form, wherex andy are the slow and fast variables, respectively.

Let z = (X, y), so that eq 25 can be expressed in compact
form as d/dt = F(z,a). This system possesses a unique
equilibrium pointzeq = (0, 0), and the eigenvalues of the
Jacobian matrix at the equilibrium poifit(zeqe,o) are—1 and
—ye L Provided thatye ' > 1 (henceforth, we consider
exclusively this case), there is a significant time scale separation
in the neighborhood dafeq. The eigenspace associated with the
slow eigenvaluéls = —1 is given byEieq ={v = (v1, v2)|vlv2

of the branching constart. improper node. Correspondingly, fér< 0, pointP; becomes
Throughout this paragraph, we set= 2 and let the other  ynstable orp /;".
two parameters ando. vary, ke«_epmg/_e*l > 10, corresponding Therefore, by focusing on the dynamics restrictecht,
to more than 1 order of magnitude in the time scale separationye gphserve an exchange of stability between pdhatand Py
at the equilibrium point. . i.e, a transcritical bifurcation at the critical value of the parameter
It readily follows from eq 25 that/j, = {(x, y)|x = 0} is an dc = 0 (corresponding to. = 1), as clearly shown in Figure 10
invariant manifold of the system. It can be split into the two \yhere the polar angles; and 6% of equilibrium points-at-
different invariant manifolds’/;” = {(x, y)lx =0,y = 0} (in  infinity Ps andP; and their stability (with respect to the flow
the physically admissible region) and, = {(x, y)Ix=0,y =< on & /;') are shown as a function of the bifurcation parameter
0} J.
By analysis of the behavior of the tangent and normal  For the chain-branching model, as for the Semenov model,
stretching rates alongzj/;+ (with the assumptiomre=1 > 10), it the occurrence of a transcritical bifurcation of the points-at-

follows that infinity determines the blow-up of the global slow manifold
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Figure 12. ¢—0 plot of the bifurcation/explosion loci fop = 1/ =

33. Line a is the explosion limit according to the Adtétnig criterion.
Line b is the bifurcation locus. Dot®] correspond to the experimental
data by Gray et al. (ref 43) on the explosion limit for methyl nitrate
decomposition.

Figure 9. Critical points-at-infinity and flow on the equator of the
Poincafesphereafé1 for the system eq 25: (A) > 0; (B) 6 < O.
Equilibrium points-at-infinityPs and P correspond to polar angleé§

= arctanf) and6; = arctan) + . Bold curves7/;>and 7/ in the

first quadrant represent the qualitative structure of the global and
generalized slow manifolds, respectively. To sum up, also for the chain-branching model, local
bifurcations at the point-at-infinity of the Pp-system provide a

) '(',: ' simple way for understanding the global behavior and the nature
‘ of the slow invariant manifolds. As for the Semenov model, a
. qualitative change in the manifold structure occurs as a
0, | - . . e .
= 0 ‘ consequence of a transcritical bifurcation at infinity. This

| bifurcation leads to the transition from a global slow manifold
(defined foré > 0 and coexisting with a generalized slow
manifold) to a generalized slow manifold (for< 0) that, close

to Zeq iS tangent to the fast eigenspace of the unique equilibrium
point. Whenever a global slow manifold no longer exists, the
local behavior close to the equilibrium point is controlled by a
finite-length Hartmar-Grobman slow manifold.

/2

/4 ¢

-4t /

-2 —/’/

-30 -15 0 15 30
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Figure 10. Polar anglest; and 67 of points Ps and P, and their
stability (with respect to the flow or&/;l) as a function of the
bifurcation parameted: dotted line, unstable branch; continuous line,
stable branch.

5. Explosions, Bifurcations, and Manifold Uniqueness

This section connects the analysis developed for the Semenov
(A)2 ML e ) model with the experimental results on thermal combustion
107 i 10° - - systems and on the occurrence of explosive behavior. Subse-
' W, : v quently, the issue of slow manifold uniqueness and the implica-

2
10°

107

10

X

20

30

tions of the results obtained for model simplification and
reduction of kinetic schemes are critically examined.

5.1. Explosions.The Semenov model is widely known for
being the paradigmatic example of explosive behavior in a
closed, perfectly mixed system, in which the instability caused
by an exothermic reaction is contrasted by the heat loss to the

Figure 11. Phase-space diagrams of the chain-branching model in the surrounding. In the CI.aSSIC 1928 ar'qél“cﬁemenoy applied th|§
xy-plane €= 0,y > 0): (A)y =2,¢ =5 x 102, o = 0.95, i.e.,0 model to present a S|mpl_e b|furcat|(_)n_al analysis of explosm_ns
>0;(B)y=2,e=5x 102 a=1.05,i.e.0 < 0. Dotted curves are  grounded on the assumption of negligible reactant consumption,
phase-space orbits. Thick lines are global or generalized invariant which holds fore — 0.
manifolds. Subsequently, several other authors have proposed different
s ) o ) explosion criteria for the Semenov system eq 10 under generic
_(///1 _connectmg the equilibrium poirq to the saddle node at operating conditions: Adler and Emfg,van Welsenaere-
infinity P, for 6 > 0. ] __Froment*2 Morbidelli and Varma8 just to quote some of the
.Th|s phenomenqn can be appreuatgd from the analysis 'Ofmost representative. For a general analysis, see Varma et al.
Figure 11A,B showing the spatial behavior of phase-space orblts(lggg)gg
(dotted lines) and invariant manifolds (continuous lines) in the |+ is'instructive to compare the experimental conditions typical
xy-plane &> 0,y > 0) for & > 0 (panel A) and ford < 0 of explosive dynamics with the parameter values leading to the
(panel B). It can be observed that, for> 0, the system  anqcritical bifurcation that modifies the structure and the
possesses two coexisting (and in some sense competitive) Slo"‘broperties of the slow manifolds.
manifolds: the generalized slow manifold" (connectingzeq Figure 12 shows the bifurcation locus of the transcritical
to the saddle nod®;, stable onaJ;) and the global slow  pjfurcations (curve b), and the explosion limit (curve a) for
manifold 7/1s (connectingzeq to the saddle nodB;, stable on  kinetic and operating conditions corresponding to the methyl
3 /3" characterized by the/o-Lyapunov numbers\® = ye1 nitrate decomposition studied by Gray et al. (1981)he
> 1 andA%* = o > 1, decomposition of the methyl nitrate {ONs) in the vapor phase
Foro < 0, the global slow manifold disappears and the spatial is highly exothermic and can be treated as a first-order reaction.
behavior of phase-space orbits is controlled by the still existing The heat of reaction & = 298 K is given by—AH = 1.505
generalized slow manifolor//y+ and by the transient Hartman x 10 J/mol and may be assumed to be independent of
Grobman slow manifold tangent to the slow eigendirection at temperature. Gray et al. performed experiments on a spherical
the equilibrium pointzeq reactor (radiusk) = 0.064 m, overall heat transfer coefficient
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(U) = 3.0 J/(n? s K)), in the temperature rang&)(510-570
K, corresponding to a value ¢f= -1 =~ 33 for different initial
pressures.

The region below curve a in Figure 12 corresponds to
explosive behavior for parameter values corresponding to the
experimental data by Gray et &F.the region on the right of
curve b corresponds to operating conditions “after” the blow-
up of the global slow manifold, where the system is character- /
ized by a generalized slow manifold corresponding toxtaeis. 10!

For the methyl nitrate decomposition, the experimental el
conditions by Gray et al. correspond to the occurrence of Figure 13. Explosion limit for the Semenov model at= 1/8 = 10.
generalized slow manifolds, and this feature is generic for most Line a is the TSB criterion, line b the AdleEnig criterion, and line
of the simple explosive reactions that can be described by means: the van Welsenaere-Froment criterion. In this figure= 1/5.
of a first-order Semenov model (see, e.g., Varma et al. (£999)
for a survey of several experimental systems in this category).
Specifically, in the case of azomethane (§EN,) decomposi-
tion analyzed by Allen and Ric¥,the dimensionless parameters
for the reaction arg = 1/ = 39.8,0 = 1.85, anck = 9.66 x

10° 10°

The two conditions expressed by eq 30 can be viewed as the
tangential-stretching-based (TSB) definition of potentially ex-
plosive conditions (referred to as runaway conditions) for the
system. The locus in the parameter space at which these two
10°3; for catalytic hydrolysis of acetic anhydride studied by conditions hold, at least for some time instgiwith the second
Haldar and Rad%y = 35.2,6 = 1.4, ande = 7.46 x 1072 In replaced by an equality, defines the explosion limit according
both casese > €. and global dynamics are characterized by to the TSB approach.
the occurrence of a generalized slow manifold (see Figure 1C,D Equation 30 can be applied in the case of generic reaction
for the phase-space portrait of the Semenov model in the schemes. In the particular case of the Semenov model, eq 11,
presence of a generalized slow manifold). All the above let T(0) = T (i.e., the coolant temperature coincides with the
observations indicate the physicochemical significance of the initial reactant temperature, and let the reference concentration
distinction between global and generalized manifolds and the scale be equal to the initial reactant concentration). Under these
genericity in the occurrence of the latter type of invariant assumptions, the initial conditions for eq 10 ae=0) = 0,
structures in explosive reacting systems. This observation isYy(t=0) = 1.
further supported by the direct inspection of the phase portrait  Figure 13 shows the comparison of the explosion limit for
depicted in Figure 1 for the Semenov model. Whenever a global the Semenov system found according to the TSB approach and
slow manifold exists (Figure 1A), the orbits converge smoothly With two classical and widely used criteria for runaway: the
toward the global manifold, and no explosive trajectories occur. criteria by Adler and Eni§f and by van Welsenaere and
The situation becomes slightly more unstable whenever a zoneFroment?for y = =1 = 10. The ordinate variable is the group
of inversion ((z) < 1) occurs (compare Figure 1B with Figure (€%c¢), where e= 2.718... is the Napier number and is the
1A); in contrast, sudden temperature variations, followed by a critical Semenov number (the grogp= 6~ is referred to as
rapid and almost complete reaction consumption, typical of the Semenov number in the explosion literature).
explosive conditions, characterize the presence of generalized The predictions of the TSB approach agree perfectly with
slow manifolds (as depicted in Figure 1D). the Adler-Enig criterion fore~* > 20 and are qualitatively

Throughout this Article, the slow manifold structure and the reasonable over the whole rangecofalues. In fact, the region
dynamics within it have been characterized by means of the € * > 4 corresponds to operating conditions for which the

Lyapunov numbers\® and A* eq 13 and ultimately on the

assessment of the explosion limit displays some intrinsic

comparison of tangential and normal stretching rates (e.g., theproblems, as also noted by Varma et“alwho resorted to

definition of the stretching ratio eq 14). It is intriguing to
develop, within a unified formal apparatus, simple and consistent
criteria for detecting explosion conditions and identifying the
relevant explosion limits.

Following Thomas and Bowésand Adler and Enig’ the

parametric sensitivity analysis.

To sum up, the stretching analysis developed for manifold
characterization provides simple, objective, and reliable criteria
to assess the occurrence of explosive behavior in chemical
systems. A thorough analysis of this issue and the application

explosive behavior can be regarded as the occurrence of a locaPf the TSB criterion to complex kinetic schemes goes beyond
accelerating behavior along system trajectories. Consequently the scope of this Article and is developed in a forthcoming work.

the occurrence of explosions can be viewed as a tangential

instability, characterized by the fact that there exists a time

0 and a statez(t) along a system trajectory at which the
tangential stretching rate, is positive as well as the integral
of the tangential stretching rate,

,(z(t) > 0 [ro &) dt >0 (30)

The latter condition expresses the property that, at time0,
[IFz®)I] > [IF(z(0)]| (i.e., that the tangential dynamics is
accelerating). This follows from the relationF(¢«(2))|] =
IIF@)|| exp(fgw.(z(t)) dt'), which derives from eq 7. An
increase of the norm of the vector field at some time instant
with respect to its initial value corresponds to a tangential
acceleration.

5.2. Manifold Nonuniqueness and Reduction MethodsThe
geometric characterization of manifold structure developed in
sections 3 and 4 permits us to highlight some controversies and
pathologies occurring in the application of model reduction
methods for chemical systems.

Let us preliminarily observe that there is a conceptual
difference between the geometric definition of slow invariant
manifolds and the corresponding concept used in model
reduction and kinetic diagnostics. This observation has been
presented by Davis and Sko#@nd can be further pinpointed
by enforcing the concepts introduced above.

Following Davis and Skodjé& a (global/generalized) slow
manifold is a heteroclinic connection between a stable equilib-
rium point and a saddle point-at-infinity. Conversely, in many
engineering applications involving complex kinetic schemes,
one is interested in finite portions of the phase space either
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Figure 14. (A) Local normal hyperbolicity locus (shaded region) for the Semenov modé for0.31,¢ = 102 in the region 0< x < 5,0<y

=< 1. Curve a s the global slow manifold corresponding to the saddle node connection with a fixed point-at-infinity. Curve b is one of the infinitely
many candidates for being a portion of an invariant exponentially attracting slow manifold in this region. (B) Stretchinfxyaso along the

two slow manifolds depicted in panel A.

y
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because the physically admissible region is bounded or because
the operating conditions of practical interest force the dynamics
to be confined solely in specific regions of the phase space.

The main issue is the following: if one is interested in a >
finite-length slow manifold, by defining it under the conditions
that (i) it is invariant for eq 1, (i) it is exponentially attracting,
and (iii) its normal perturbations decay faster than tangential
ones, there are eventually infinitely many structures possessing
these three properties.

To verify this statement via an example, consider the frigyre 15. Convergence of the MLA method toward a global slow
Semenov model and a bounded @etontaining the equilibrium manifold for the Semenov mod@ = 0.31,¢ = 1072 The arrow

point, and define the setny C & as the set of points for i_ndic_ates increasing_timets= 0.01, 0.02, 0.05, 0.1, 0.5. The thicker
which , < 0 andw, < w,. This set of points corresponds to line is the slow manifold.

the region in which the normal perturbations decay faster than  First, as shown in section 3 with reference to the Semenov
tangential ones and correspondingly can be defined as the locusnodel, the region of inverting behavior causes the ILDM to be
of local normal hyperbolic (LNH) behavior. composed of two disconnected branches (Figure 3), the one
If one considers any initial condition belongingd ny such emanating from the equilibrium point approximating the tran-
that the corresponding orbit is fully contained in the domain sient HartmarGrobman manifold discussed in section 4.2 and
UDinn, it follows from definition that any such orbit fulfills the other branch approximating the other noninverting portion
conditions i-iii stated above and therefore is a valid candidate of the slow manifold.
for being considered as a “slow invariant manifold”. For ~ Higher order methods such as the iterative methods by
example, Figure 14A shows the local normal hyperbolicity locus Rousset-Fraser (RF) or the computational singular perturbation
for the Semenov modeB(= 0.31,¢ = 1073), and lines (a) and (CSP) refinements are also unable to identify the global inverting
(b) are two distinct forward orbits that may represent equally Slow manifold found by MLA, because these procedures either
well a template for a slow invariant manifold in the bounded fail to converge or find multiple roots in the inverting region.
region 0< x < 5, 0 < y < 1. The latter property can be This implies that, whenever an inversion occurs, the diag-
confirmed by the behavior of the stretching ratfg) vsxalong ~ Nostic and reduction methods may perceive system dynamics
these manifolds, which is depicted in Figure 14 panel B. This @S no longer one-dimensional and that normal modes should
is a further indication of the intrinsic arbitrariness in the D€ necessarily accounted for. In other words, the phenomenon
definition of slow manifolds in bounded domains of the phase ©f Stretching rate inversion along a global, aadortiori a
space. In fact, the existence and the properties of the transien@eneralized slow manifold, explains why in the application of

Hartman-Grobman manifolds are a further confirmation that Many model reduction algorithms (such as ILDM or CSP) a
global invariant structures (such as global/generalized slow nonmonotonically decreasing variability in the number of active

manifolds) and local slow invariant manifolds with a stretching modes along system trajectories may be _observed. Th's. phe-
ratio greater than 1 may be, in some cases, two distinct angnomenon can be fully appreciated in dynamical models in higher

different point sets (e.g., Figure 17 panel E). dimensional .p_ha.se spaces thars 2. .
e . . . . However, it is interesting to address the question of how the
The classification of slow invariant manifolds using the kn

dich ; lobal/ lized | ina/noni ) b owledge of the development of a global inverting slow
ichotomies global/generalized inverting/noninverting can be ,ayifo1q in a dynamical system, and the ability to identify it,
used to frame some computational problems arising in connec-

. . . . can be related to model reduction.
tion with model reduction algorithms. By inspection of Figure 17 panel E, one can note that orbits

Indeed, global noninverting slow manifolds are the ideal starting on they-axis, for small values of, undergo a fast
invariant structure in view of achieving an efficient and reliable transient nearly parallel to theaxis, and then they all coalesce
model reduction. Instead, the development of global inverting onto the transient HartmarGrobman manifold (thick solid line
slow manifolds, that is, global slow manifolds along which the a); thus, this class of orbits is reducible along the transient
local stretching ratia(z) can, at least in a finite number of Hartman-Grobman manifold as approached from small values
compact regions, take values lower than 1, i.e., where normal of x.
perturbations decay more slowly than tangential ones, affects However, for large values of, all orbits turn around the
model reduction in a number of ways. extremum point of the HartmarGrobman manifold (ak =

0 5 10 15 20
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102 > e(f), f = 0.21.
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region with paths nearly parallel to line b to eventually reach
the Hartman-Grobman manifold; thus, these classes of orbits
are also reducible along the Hartma@robman manifold as
approached from large values xf

This discussion points out that model reduction could indeed
be possible even when a region of inversion occurs, but the
reduced model cannot be expected to be built upon a single
slow manifold constraint, because the development of the region
of inversion induces a partitioning of the phase space in a
number of basins of attraction characterized by requiring
different low-dimensional manifolds as constraints. Clearly,

Convergence of material lines toward a generalized slow manifold. Plot although reasonably accurate approximations of the Hartman

of L, for several values df, at the initial stages of the process. Line a
refers tot; = 0.1, (b) tot, = 0.12, (c) tots = 0.15, (d) toty = 0.2. The
initial material lineL, coincides with they-axis.

x*), are attracted by the noninverting portion of the global
inverting slow manifold (labeled as (b) in Figure 17 panel E),
and eventually are funneled along the global inverting slow
manifold found by MLA (line b in Figure 17 panel E) until
reaching the HartmanGrobman manifold; thus, this class of
orbits is reducible along the global inverting slow manifold,
despite its inverting nature.

There exist two other types of dynamics corresponding to
orbits with initial conditions either lying between the Hartman
Grobman manifold and the global slow manifold (line b) or

Grobman manifold can be found by methods such as ILDM,
CSP, and RF, none of these methods can identify the global
inverting slow manifold, whereas, at least for one-dimensional
manifolds, MLA has been demonstrated to be successful.

6. Concluding Remarks

This Article has developed a detailed analysis of the structure
and the properties of slow manifolds in prototypical models of
thermal combustion by focusing on the occurrence of local
bifurcations (associated with the points-at-infinity) that modify
the nature and existence of slow invariant manifolds.

The concept of slow invariant manifolds has been developed
in a fully geometric framework divorced from any perturbative

below line b. In both cases, the orbits cross over the inverting formulation. By making use of the Poinégpeojected system,
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Figure 17. Estimate of the transient Hartma@robman slow manifold3

=0.31and =5 x 1072 > ¢ in panels A-C; 8 = 0.21 ande = 5 x

1073 < ¢ in panels D-F. (A) and (D) stretching ratio(x) vs x along different orbits starting on theaxis for increasing values gf (direction

of the arrow). The dotted horizontal linetis= 1. The thick line shows the behavior ) along the particular orbit for which(x) = 1 for x €[0,

x*, r(x*) =1, d(x)/dx|x = 0. (B) and (E) Transient HartmarGrobman slow manifold and spatial behavior of nearby orbits (dotted lines). Curves
a and b in (E) show the spatial behavior of the transient Hartn@mbman manifold (line a) coexisting with the global slow manifold (line b).
(C) and (F) Behavior of-w.(x) (curve a),—w.(X) (curve b), and(x) (curve c) vsx along the transient HartmarGrobman slow manifold. The

dotted vertical line indicateg*.
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a slow invariant manifold//’can be viewed as the heteroclinic
connection between the equilibrium poiRg and the saddle
point-at-infinity P;. Material line advection provides a simple
method to estimate/!

Conversely, although the slow manifold so defined is unique,
its dynamical properties may be “pathological” for what

J. Phys. Chem. A, Vol. 110, No. 50, 20063461

collapse toward the invariant manifoldis represented by the
positive portion of thex-axis, which is the unique generalized
slow manifold in the first quadrant.

Appendix B

In this appendix, we present a way for constructing the

common sense expects to be a “well-behaved” slow manifold. y4nsjent HartmanGrobman slow manifold for the Semenov

The occurrence and nature of the slow manifolds exhibited ,qqel. This can be performed by considering many different
by a given dynamical system have a deep impact on the validity 5 p,its starting from (Oyo) (i.e., points on the-axis, yo > 0)

and the applicability of methods and techniques suited for model ., increasing values ofp and by analyzing the behavior of
reduction and kinetic simplification. Although we considered {4 stretching ratio along the orbits. The HartmarGrobman

in this Article solely low-dimensional prototypical models for  ¢jow manifold can be defined as the maximal portion of the
combustion and explosions, the qualitative characterization of particular orbit of this family for whichr(x) = 1 for x e [0, x*]

the invariant slow manifolds developed in section 3 provides 5n4 such that(x*) = 1 and d(x)/dxly = O (see Figure’ 17A
useful and general hints on the computational difficulties that hicker line). The resulting transient manifold is depicted in
may be encountered in higher dimensional combustion models. g re 178 together with the behavior of different orbits close
Although in the presence of global slow manifolds it is expected {5 the equilibrium pointZeq

that model reduction techniques may be successfully applied Figure 17C depicts the behavior of the tangential/normal

over the whole phase space, more complex situations may aris&retching rates and of the stretching ratio along the transient
if solely a generalized slow manifold or a transient (Hartmann .\ nifold. It can be observed that(x) < 0 andw.(x) < O (i.e.

Grobman) manifold exists. In the latter case, model reduction the ransient manifold is normally stable (exponentially attract-
tech_nlques may give rise t(_) the detection of_apparent s_Iow ing)) andr(x) > 1 (i.e., the transient manifold is a slow
manifolds that appear as disconnected sets (i.e., as a union Oﬁoninverting manifold).

disconnected submanifolds) in which dimensional variability e blow-up of a global slow manifold far> ¢, makes the

may occur (i.e., in which the number of slow variables may o.c\rrence of transient Hartmarobman manifolds associated
apparently be different within each disconnected submanifold). \yith the local behavior of the system closezg particularly

This phenomenon has been observed for high dimensionalgjgnificant. However, the presence of such transient manifolds
combustion systems and finds a clear interpretation within the .o pe established also for< e, in all the situations in which

geometric theory developed in this Article as a consequence Of ihare exists a global slow manifold showing inversion close to
stretching-rate inversion (discussed in section 3.1). The extension,

of the geometric approach proposed in this article to kinetic
schemes in phase spaces possessing dimensions higher than
= 2 is developed in ref 21.

Appendix A

The material line advection (MLA) technique is used in the
analysis of fluid mixing systems to obtain the geometric structure
of the invariant unstable manifold%3¢ The MLA technique
for one-dimensional slow manifold identification is briefly
reviewed below.

Given an infinite-length initial curvég passing througheg,
consider the forward iteratds, = ¢,(Lo), n = 1, 2, ..., where
{t.} =1 is a monotonically increasing sequence of positive time
instants diverging to infinity.

Forn — o, L, converges toward the global slow manifold,
whenever it exists, or toward the generalized slow manifold.

In the practical implementation of the method, it is not
necessary to consider “infinite-length” initial curdasbut solely
a sufficiently long initial material line. Depending on the slowest
fast time scale; min all over the phase space, it is sufficient to
considett, € (trmin) in order to achieve a satisfactory conver-
gence toward an invariant slow manifold.

Figure 15 shows the convergence of the MLA method for
the Semenov model @t= 0.31> * ande = 102 < ¢. The
global slow manifold7/®is depicted with a thicker line. Observe
that fort, = 0.5 the material line already collapses orit@s.

The forward iterates of material lines allow the identification
of local and generalized slow manifolds (which closedgare
tangent to the fast eigendirections). Figure 16 shows the
evolution of a material line (initially coinciding with the non-
negative portion of thg-axis) at the early stages of the process
for e > e

As expected, at early times, material lines bend around a local
slow manifold of the equilibrium pointeq and progressively

eq

This phenomenon is depicted in Figure X7Bfor § = 0.21
ande =5 x 1078 < ¢.. In point of fact, Figure 17E shows the
structure of the transient Hartma@robman manifold (line a)
coexisting with the global slow manifold (line b) and the
behavior of orbits close to the equilibrium poinf, Visual
inspection of Figure 17BF indicates that the local behavior
close tozeq is essentially governed by the transient Hartman
Grobman manifold, although for the set of parameter values
considered in Figure 17BF, there exists a global (inverting)
slow manifold.
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PG, 3_1 = (—AH)ke "Fc—Ua(T—-T) g—: = —ke e

wherer is the physical timep the densityc, the specific heat,fAH) >

0 the reaction heaky the kinetic rate prefactoE the activation energy)

the overall heat transfer coefficierst,the specific exchange surface area
(i.e., the ratio of the heat exchange area to the reactor volume)&he
coolant temperature. By introducing the dimensionless variableg,T —
To)ylTe, y = clco, t = tkoe™?, wherecy is a reference concentration value,

y = E/IRT,, 8 = 1y, P = y(—AH)co/pc, T, Q = Uae’/pcyko, 6 = QIP, € =

P~1, the dimensionless formulation of the Semenov equations attains the
form of eq 10.

(48) If € is a small parameter in the Semenov model, eq 10 is already
expressed in a singularly perturbed canonical form and the reduced manifold
7/1eq, defined fore = 0, reads as/fed = { (X, y)|y = h(X) = x6/q(x), X € (X,

)}, where the value, = —1/8 corresponds physically 6= 0 K. It can

be shown that, fof > 1/4, 7/{.qis linearly stable and the conditions of the
Fenichel theorem apply, so that there exists, for sufficiently smadin
invariant manifold 7/ that is ()(€) close to 7/{eq, and 7/{eq can be viewed

as the slow-dynamic templateeat= 0. For < 1/4, 7/1eqis linearly unstable,
and its nonmonotonic behavior (it exhibits a maximum and a minimum as
a function ofx) does not correspond to any limit template for the slow
invariant manifold?/, ase — 0. This claim can be simply proved as follows.
The one-dimensional slow manifold is an invariant manifold. Therefore,
given a pointz*= (x*, y*) belonging to it, the phase flow(z*) for t = 0
coincides with the portion of the slow manifold defined foe [0, x*].
However, the behavior of(t), along a trajectory of the Semenov system
starting from a point witty* > 0, is monotonically decreasing, independently
of the values ot. Actually, dy/dt < 0O, for allt, x, and this corresponds to
the fact thaty represents the dimensionless concentration of an irreversibly
consumed reactant in a batch system, so that it must necessarily decrease
in time. Suppose that the representatjen h.(x) for the invariant manifold

7/ possesses a local minimumat= Xy, and takex* > xy. There would
exist a region of the manifold at whictyfdit > 0, which is impossible by
the irreversibility of the reaction.

(49) Consider a generic manifold”different from 7/’s and 7//f and a

(46) This note briefly reviews some concepts of dynamical system theory pointz e 7 z = 0. A vectorce(z) tangent to7//at z can be expressed as

that will be used throughout the paper. Le¥ be an n-dimensional
differentiable manifold, with.// C R". A smooth curve through a point
p € /is aC-mapy: (—a, @) — .7/ with y(0) = p. The tangent space to
M at a pointp € .7/, Tp. /7, is the set of all vectors tangent to smooth curves
passing through the poipte ./ The tangent spack. //is ann-dimensional
linear space, and we shall view it as a subspack"of vector fieldf on
'is a functionf: .7/ — R" such thatf(p) € T,/ for all p € 7. If we
define the tangent bundle of/, T/, as the disjoint union of the tangent
spaceslp. //to .//for p € ./, then a vector field on/is a functionf: ./
— Tp.//. Let us consider the systex— f(x), wherex € .7/ with .//being
an n-dimensional manifold of clas§? andf a C! vector field on.7. We
have local existence and uniqueness of solutions through anyxp@nt/.
A solution or integral curve on/, ¢i(Xo) is tangent to the vector fielflat
Xo. If .//is compact and is aC! vector field on.7; theng(xo) is defined
forall t € R andxo € ./ and it can be shown that @ € (R x .7), (i) ¢
= ¢sit for any real values okt, where ©°” indicates composition, i.e.,
oup(p) = o(d(p)). ¢« is called the phase flow on the manifold/
associated with the vector fiefd By definition, dp(x)/dt = f(¢i(x)). If the
manifold .//is the phase spade” itself, we indicate the tangent space of
R" at z simply asT,.

(47) Let c and T be the concentration of the reactafitand the

co(2) = e + €, wheree® and €' are the eigenvectors of the coefficient
matrix, associated with the eigenvaluess and—Af, respectively, ands,

¢ = 0 are real numberso(2) is parallel toF(z). Fort > 0, ¢(z) = ce e

+ cie e = e et I(e= MM, where ()(x) is a quantity order of its
argumentx. It follows that lim—. log||c(z)||//t = —4S. A normal vector
no(2) at z can be expressed as = ne° + ne, wherens, ny are different
from 0, and such thato 0 co. At timet > 0, ¢;(2)ng = N *e+ ne e,

The norm||T4x)[¢;(2)no] || of the normal projection is simply the absolute
value of the vector product (indicated wittx") of ¢;(z)no times the unit
tangent vectory(z)/||c(2)1], i-e., [Ind| = 1(¢{(2)no) x c(@)I/lc(2)]. After

the expressions for the two vectors derived above are substituted, and after
some elementary algebra, it follows thiat|| = Ce ™t + (e~ @A),
whereC = |(nr — nics) (€8 x €)| > 0. Therefore, lim-.. log||ng |/t = —Af,

and A = limi log||ny|/log||ci|| = AT/AS. For A%, the same procedure can
be repeated, with the only difference tlai(z) = e"'[cel + O(e=* 2]

with t > 0. Therefore, lim-» log|lc—«(2)||/t = Af, and ||n—(2)|| =

[(#* (2Ng) x c—(2)|/l|c-1(2)]] ~ €. It follows that A% = lim—e log|[n—|/
log||c—t|| = A%Af, which proves the third line in Table 1. The other results
reviewed in Table 1 can be obtained in the same way, by simply observing

temperature, respectively. The energy and mass balance equations reathat, for 7/s, co = €5, and, for 7%, co = €.



