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This article analyzes in detail the global geometric properties (structure of the slow and fast manifolds) of
prototypical models of explosive kinetics (the Semenov model for thermal explosion and the chain-branching
model). The concepts of global or generalized slow manifolds and the notions of heterogeneity andR-ω
inversion for invariant manifolds are introduced in order to classify the different geometric features exhibited
by two-dimensional kinetic schemes by varying model parameters and to explain the phenomena that may
occur in model reduction practice. This classification stems from the definition of suitable Lyapunov-type
numbers and from the analysis of normal-to-tangent stretching rates. In the case of the Semenov model, we
show that the existence of a global slow manifold and its properties are controlled by a transcritical bifurcation
of the points-at-infinity, which can be readily identified by analyzing the Poincare´ projected system. The
issue of slow manifold uniqueness and the implications of the theory with regard to the practical definition
of explosion limits are thoroughly addressed.

1. Introduction

The mathematical modeling of combustion processes under
well-stirred conditions involves the analysis of systems of
ordinary differential equations characterized by the occurrence
of a broad range of time scales.1 Time scale heterogeneity
implies stiffness (and the ensuing problems in the numerical
integration of model equations), but the occurrence of a time
scale separation makes it possible to use numerical procedures,
algorithms, and computational techniques for solving and
reducing the model equations.2,3 Diagnostic analysis of complex
reaction schemes is a central issue in chemical reaction theory
and is becoming increasingly important in facing the enormous
complexity of biochemical reaction networks associated with
subcellular metabolic and regulatory processes.4,5

In the search for efficient simplified and reduced models,
different computational approaches have been proposed and in
some cases successfully applied.6-11 The geometric paradigm
on which all these methods rely is the occurrence of slow
invariant manifolds12-14 within the phase space. Intuitively, slow
manifolds are invariant, exponentially attracting manifolds on
which neighboring orbits collapse. This implies that, apart for
a possibly short transient, the “relevant dynamics” evolves onto
a lower-dimensional manifold, along which the original stiffness
of the system can be softened, because “fast” modes, which
are exhausted, can be removed by projecting them out.
Notwithstanding the extensive use of the “slow-manifold
paradigm”, its definition is somehow still controversial, as
witnessed, e.g., by the scientific contest put forward by E. N.
Lorenz (“On the nonexistence of a slow manifold”15 and “The
slow manifoldswhat is it?”16) on the existence and meaning
of a slow manifold in a low-dimensional model for the shallow
water equations.15-17

The reason for this and similar controversies in the definition
and the meaning of a slow manifold may be attributed to
different reasons: (i) the conditions imposed by different authors
on slow manifolds may have different natures (e.g., by imposing
some smoothness and analyticity criteria on the local representa-
tion of the manifold itself16,17); (ii) methods and definitions
deriving from perturbative analysis of singularly perturbed
systems are often intermingled with purely geometric concepts18

(perturbation studies focus on local portions of a slow manifold
near the equilibrium point of a singularly perturbed system, and
a purely geometrical definition should be grounded on global
properties defined throughout the phase space (see sections 3
and 5)); (iii) in practical applications to model reduction of
complex kinetic schemes, “intrinsic low-dimensional manifolds”
lack some basic properties (such as invariance), and this collides
with more formal mathematical definitions.19 Correspondingly,
the very basic concept of “slow/fast decomposition” of a
complex reaction scheme may involve some intrinsic degree
of arbitrariness because it relies on the specific method adopted
in model diagnostics and reduction (ILDM,6 CSP,8 MIM, 20

NTDRB11).
Just because of these controversial issues, it is becoming

important to attempt to reconcile the various definitions by
resorting to a rational geometric characterization of the slow
manifold structure, capable of taking into account the different
phenomenologies occurring in chemical reaction systems.

The aim of this Article is to address the problem of when
and where a dynamical system exhibits a slow manifold and
how slow manifolds can be defined and characterized. In this
Article, we analyze simple (two-dimensional) models of ex-
plosive kinetics, which are especially suited for highlighting
the different phenomenologies and “pathologies” associated with
the slow manifold structure. The extension to higher dimensional
systems is developed in ref 21.

Specifically, we (i) focus on the geometrical problems
associated with the existence of slow manifolds and with the
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“nonuniformity” of these manifolds and (ii) identify the bifur-
cational routes that are responsible for the possible “blow-up”
of a global slow manifold.

These bifurcations are of local nature and are related to the
behavior of the points-at-infinity of the systems. The application
of the compactification technique due to Poincare´ is the key
tool to address “manifold bifurcations”. This method has already
been applied in the field of complex reaction schemes and
manifold structures by Davis and Skodje22 and by Davis and
Klippenstein.23 The local bifurcations at infinity may have a
dramatic impact on the global behavior of the system and can
be readily identified by analyzing the Poincare´ projected system
associated with the original model.

As a model system, we consider the classical Semenov model
for a thermal explosion,24,25 which has been the subject of in-
tense investigation as a benchmark for testing the validity of cri-
teria aimed at determining explosion limits26-29 and, more recent-
ly, for validating some computational methods for model
reduction.18

We develop a thorough analysis of this model oriented toward
the geometric and bifurcational characterization of the slow and
fast invariant manifolds. Indeed, the Semenov model provides
a simple and clear example of the blow-up of a global slow
manifold, which we believe to be frequent in explosive
combustion systems. In point of fact, we show that qualitatively
similar features (local bifurcation of points-at-infinity and global
slow manifold blow-up) occur in other models of combustion
kinetics and explosions, such as the chain-branching model.30

Although both the Semenov and the chain-branching models
can be rightly classified as singularly perturbed problems, we
do not analyze these models via classical perturbative methods,
but we follow a purely geometric approach, based on the
properties of normal/tangent stretching rates, and ultimately on
the concept of normal hyperbolicity.19

The Article is organized as follows. Section 2 is a concise
review of the basic mathematical tools used throughout the
Article (e.g., vector dynamics and normal/tangent stretching
rates). Section 3 presents a phenomenological overview of the
Semenov dynamics as it regards invariant manifold structure
and subsequently formulates a geometric definition of global
and generalized slow manifolds via the introduction of suitable
Lyapunov-type numbers. The development of the theory leads
naturally to the introduction of related concepts, namely the
R-ω inversion and the time scale heterogeneity along invariant
manifolds. The structure of invariant manifolds can be fruitfully
analyzed by introducing the Poincare´ projected system associ-
ated with the original model. This is presented in section 4
together with the detailed analysis of the local bifurcations of
the points-at-infinity for the Semenov model. Compactification
methods are also applied to another prototypical model for
explosions, the isothermal chain-branching model, for detecting
the bifurcations influencing invariant manifold structure. Finally,
section 5 addresses some practical issues connected with
explosive kinetics and comments on the meaning of the
geometric theory developed in the perspective of model
simplification and reduction.

2. Basic Definitions and Mathematical Tools

This section introduces the basic definitions and reviews some
elementary properties of invariant manifolds.46

Consider a generic dynamical system

defined in ann-dimensional phase space, e.g.,z ∈ Rn, and let
φt(z) be the phase flow associated with eq 1. LetW be an
m-dimensional smooth manifold embedded inRn.46 The mani-
fold W is invariant for eq 1 ifφt(z) ∈ W for anyz ∈ W and for
any t > 0.

An invariant manifoldW is exponentially attracting for eq 1
if there is a neighborhoodU of W and two positive constants
C andλ such that

where d(z,W ) ) infw∈W ||z - w|| is a measure of the minimum
distance of pointz from points belonging to the manifoldW
and||‚|| is a norm inRn (for example, the Euclidean norm||z||
) x∑h)1

n zh
2).

Invariance and the exponential attracting nature are the two
basic properties defining what is commonly regarded as a slow
manifold for eq 1. We will discuss in sections 3 and 5 that these
properties should be further complemented by another condition
related to the behavior of normal perturbations.

To approach vector dynamics and introduce the definition
of linear stability for a one-dimensional invariant manifold
(because the properties of one-dimensional invariant manifolds
are the main focus of the present Article), letTz be the tangent
space32 at the pointz. Tz is isomorphic toRn and can be
decomposed into the direct sumCz x Nz, whereCz is the one-
dimensional vector subspace spanned byF(z), i.e., by the vector
field itself, andNz is the orthogonal complement toCz in Rn.
Let Πz:Tz f Nz be the orthogonal projection operator, mapping
a vectorv ∈ Tz into its component lying in the subspaceNz.

Within the tangent bundle, the vector dynamics associated
with eq 1 is defined by the linearized equation

which, when coupled to eq 1, forms a skew-product system,31

i.e., a system of differential equations, in the present case in
the variablesz andv, in which the first set of evolution equations
(eq 1) for the variablez depends exclusively onz and is
decoupled from the evolution equations forv (eq 3), which
depends on bothz and v. In eq 3, F*(z) ) ∂F(z)/∂z is the
Jacobian matrix of the vector field.

Let v(t) ) v(t,z0,v0) be the solution of the skew-product
system (eqs 1 and 3) starting fromv(t)0) ) v0 ∈ Tz0. The formal
solution of eq 3 can be expressed as

whereφt
/(z) ) ∂φt(z)/∂z is the Jacobian matrix (differential) of

the phase flow.
An invariant manifoldW for eq 1 is linearly stable33 if, for

any z0 ∈ W and v0 ∈ Tz0, the vectorv(t,z0,v0) satisfies the
following inequality:

for some positive constantsC1 andλ1.
Equation 5 implies that the normal component of any vector

advected by the dynamics eqs 1 and 3 shrinks exponentially in
time.

There is a strong relation between exponentially attracting
and linearly stable manifolds. Indeed, an invariant manifold for
eq 1 is exponentially attracting if and only if it is linearly
stable.34

dz
dt

) F(z) (1)

d(φt(z),W ) e Ce-λt d(z,W ) ∀z ∈ U ∀t > 0 (2)

dv(t)
dt

) F*(z(t)) v(t) v(t) ∈ Tφt(z) (3)

v(t) ) v(t,z0,v0) ) φt
/(z0)v0 (4)

||Πφt(z0)
v(t,z0,v0)|| e C1e

-λ1t||v0|| ∀t > 0 (5)

13448 J. Phys. Chem. A, Vol. 110, No. 50, 2006 Creta et al.



The definition of linear stability for invariant manifolds
involves vector dynamics, so it is useful to elaborate further
for eq 3. By taking the scalar product of both the left- and the
right-hand sides of eq 3 withv(t), one obtains

where (v,w) ) Σh)1
n Vhwh is the scalar product for vectors in

Rn. Equation 6 can be formally solved to obtain

wherev̂ is the unit vector spanningv. Equation 7 describes the
evolution of vector norms by means of the stretching rate (F* v̂,
v̂) where F* is the Jacobian matrix of the vector fieldF
generating the dynamics.

Given a one-dimensional invariant manifold for eq 1, i.e., an
orbit for the flow φt(z), two characteristic stretching rates can
be defined, associated with the evolution of tangential and
normal vectors.

The tangential stretching rateωτ(z) at pointsz ∈ W is defined
as

whereĉ ) F/||F|| is the unit vector tangent toW.
The normal stretching rateων(z) at z ∈ W can be defined as

by considering the maximum over all the possible unit vectors
n̂(z) normal toW at z.

3. Global and Generalized Slow Manifolds

Consider a dynamical system possessing (i) a unique stable
equilibrium pointzeq ) 0 such that (ii) the linearized dynamics
in the neighborhood ofzeq is characterized by a significant time
scale separation in the eigenvalue spectrum. This is a typical
situation in which one expects that the slow manifold paradigm
would apply; i.e., there must exist a slow invariant attractive
manifoldW, around which orbit dynamics is organized, so that
after a short transient (order of magnitude of the time scales
associated with the fast dynamics) orbits collapse ontoW.
However, this scenario may be more complex in nonlinear
systems.

In order to learn from experience the qualitative behavior of
the class of systems satisfying the conditions, (i) and (ii), let us
first analyze in greater detail the qualitative features of orbit
dynamics in the Semenov model, representing the dynamics of
a first-order exothermic batch reaction Af product in a well-
stirred jacketed reactor

We let the model parametersε, â, andδ vary47 and focus on
the different kinds of geometric structures that may appear.

The Semenov model possesses a unique stable equilibrium
point zeq ) (0, 0), and the eigenvalues of the Jacobian matrix
F*(zeq) at zeq are -1 and -ε-1δ. Provided thatε-1δ . 1

(henceforth, we consider exclusively this case), there is a
significant time scale separation in the neighborhood of the
equilibrium. The eigenspace associated with the slow eigenvalue
(λs ) -1) is given byEzeq

s ) {v ) (V1, V2)|V2/V1 ) δ - ε}; the
fast eigenspace (associated withλf ) -ε-1δ) is given byEzeq

f

) {v ) (V1, V2)|V2 ) 0}. It is easy to verify that the mani-
fold Wx ) {x|y ) 0, x ∈ [xc, ∞)} (i.e., the semi-infinite portion
of the x-axis starting fromx ) xc ) -1/â) is an invariant
manifold for the system. Unless otherwise specified, we setδ
) 1, because all the characteristic features of the system can
be explored by letting the other parametersε and â vary.
Moreover, we consider exclusively the caseε-1δ > 10, which
corresponds to more than 1 order of magnitude in the time scale
separation at equilibrium (0, 0). This implies for the slow
eigenspaceEzeq

s ) {v ) (V1, V2)|V2/V1 ) δ - ε ) ε(δ/ε - 1) =

δ ) 1}, so that it forms an effectively constant angle of about
π/4 with thex-axis for the parameter values considered.

Figure 1A-D depicts the phase-space diagrams (collection
of different orbits) for some typical conditions. Panels A and B
refer to very small values ofε, for two different values ofâ,
i.e., â ) 0.31 (Figure 1A) andâ ) 0.21 (Figure 1B),
respectively, above and below the characteristic valueâ* )
1/4.48

The phase-space diagrams A and B are typical of a nicely
behaved system, possessing a global time scale separation
between slow and fast dynamical components so that all the
different orbits collapse onto a slow manifold (thick line a).
This type of slow manifold is an example of what we refer to
as a global slow manifold. Throughout this paragraph, we are
forced to make an intuitive use of the concepts of “global” and
“generalized” slow manifolds that will be introduced and
illustrated in the forthcoming sections.

By increasing ε, and keeping a significant time scale
separation at the equilibrium point, the phase-space diagram
changes dramatically. Atε ) 5 × 10-2 (Figure 1C,D), it is
hard to detect the development of a global slow manifold,
because there is an almost uniform distribution of orbits within
the phase space, and no global attracting curve can be singled
out, even if, close to the origin, a remnant of the finite-length
local slow manifold associated with the equilibrium point
Wzeq,loc

s still persists (Figure 1C). Actually, orbits starting from
large values ofy g 8 (Figure 1D) collapse onto thex-axis, which
effectively plays the role of a slow manifold, although such
direction is associated with the fast eigenspace.

The peculiar features of the phase-space diagrams shown in
Figure 1C,D, when compared to those of Figure 1A,B, clearly
suggest that, by varying the two controlling parametersâ and
ε, the dynamics undergoes a “bifurcation”, causing the blow-
up of the “global” slow manifold and the birth of a new kind
of invariant structure (which will be referred to as a generalized
slow manifold), corresponding, in this case, to thex-axis.

The global slow manifolds depicted in Figure 1 have been
obtained by applying the technique of material line advection
(MLA), borrowing it from the analysis of chaotic mixing
systems.35,36The MLA technique for slow manifold identifica-
tion is briefly reviewed in Appendix A.

Figure 2A,B reviews the geometric structure of the global
slow manifoldsW s for â ) 0.31> â* and â ) 0.21< â*, for
several values ofε. Specifically, a portion ofW s close tozeq )
(0, 0) is depicted.

In both the casesâ > â* and â < â*, we observe that, asε
increases (following the direction of the arrow in Figure 2A,B),
the structure of the global slow manifold changes significantly

d||v(t)||2
dt

) 2(F*v,v) ) 2
(F*v,v)

||v||2
||v||2 (6)

||v(t)|| ) e∫0
t (F*v̂ ,v̂)dτ||v0|| v̂ ) v/||v|| (7)

ωτ(z) ) (F*(z) ĉ(z), ĉ(z)) z ∈ W (8)

ων(z) ) max
n̂∈Nz,||n̂||)1

(F*(z) n̂(z), n̂(z)) z ∈ W (9)

dx
dt

) ε
-1(yq(x) - xδ) ) ε

-1f(x,y)

dy
dt

) -yq(x) ) g(x,y) q(x) ) exp(x/(1 + âx))
(10)
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and seems to collapse onto thex-axis. This behavior suggests
that, by increasing the value ofε (for a fixed value ofâ), we
are getting closer to the bifurcation point at which the global
slow manifold blows up and thex-axis starts to play the role of
a weakly attracting invariant structure (see Figure 1D forâ )
0.31 andε ) 5 × 10-2).

MLA is a very simple and powerful numerical technique for
the identification and the computation of one-dimensional slow
manifolds, which is based on the idea that a (generalized/global)
slow manifold is geometrically represented by the graph of an
exponentially attracting, connected, and infinitely extended
invariant curve. The infinite extension of the geometric invariant
templates is further elaborated in section 4.2 in connection with
the role of points-at-infinity and coincides with the analysis
presented by Davis and Skodje in ref 22. MLA overcomes all
the intrisic limitations of “local” techniques (e.g., ILDM) on
the basis of the local eigenvalues/eigenvectors structure, which
face significant problems when regions of complex conjugate
eigenvalues occur in the phase space.

Consider, for example, in Figure 3A,B, the approximated slow
manifold obtained by ILDM (continuous line) and the global
slow manifold obtained by MLA (dashed line). The ILDM-
approximated slow manifold consists of two disconnected
branches separated by the region where complex conjugate

eigenvalues appear (region cc, delimited by dotted-line curves).
A similar situation occurs in the analysis of the 3-D enzyme
inhibition kinetics (EIK) reported in the paper “Global analysis
of Enzyme Inhibition Kinetics” by Roussel and Fraser.37 The
authors observe that, for some values of the parameters, it is
possible to identify a region in the phase space characterized
by a pair of complex conjugate eigenvalues of the Jacobian
matrix. Therefore, by making use of local analysis based on
the properties of the Jacobian matrix, the authors draw the
conclusion that the region of complex eigenvalues (region cc)
breaks the 1-D slow manifold into two distinct pieces and that,
inside the region of complex conjugate eigenvalues, the 1-D
slow manifold is undefined. The analysis of the Semenov model
and the technique of MLA reveal that such a conclusion for
the EIK model, based exclusively on local analysis, may be
erroneous.

Moreover, the left-hand branch, starting from the equilibrium
point, results in a nonmonotonic curve, thus violating the
invariance property (because, by the nature of the model
equation (10), the concentration along any invariant manifold
should be a monotonically decreasing function of time, or
equivalently, it should be a monotonically increasing function
of any curvilinear abscissas, such thats ) 0 at the equilibrium

Figure 1. Phase-space diagrams for Semenov model (δ ) 1) in several typical cases. Whenever it exists, i.e., in cases A and B, the global slow
manifold has been depicted with a thick line (line a in the figures). (A)â > â* ) 0.31,ε ) 10-3. (B) â < â* ) 0.21,ε ) 10-4. (C),(D) â ) 0.31,
ε ) 5 × 10-2.

Figure 2. Global slow manifolds of the Semenov model forâ ) 0.31
> â* (A) and â ) 0.21 < â* (B), for several values ofε. (A) â )
0.31. From top to bottom, in the direction of the arrow:ε ) 10-4,
10-3, 5 × 10-3, 10-2, 2 × 10-2. (B) â ) 0.21. From top to bottom, in
the direction of the arrow:ε ) 10-5, 10-4, 10-3, 2 × 10-3, 5 × 10-3.

Figure 3. ILDM-approximated manifold (continuous line (a)) and
global slow manifold obtained by MLA (dashed curve (b)) of the
Semenov model for (A)â ) 0.31> â*, ε ) 10-3 and (B)â ) 0.21<
â*, ε ) 2 × 10-3. Region cc, bounded by dotted-line curves, is
characterized by complex conjugate eigenvalues of the Jacobian matrix.
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point). Further discussion on the ILDM approximation is
developed in section 5.

3.1. Global Slow Manifold, R-ω Inversion and Hetero-
geneity. The aim of this section is to introduce a geometric
definition of global slow manifolds and to present related
concepts, namely the phenomenon ofR-ω inversion and the
quantification of time scale heterogeneity along invariant
manifolds. To simplify the notation, we develop the theory for
two-dimensional6 dynamical systems (as the Semenov model)
possessing a unique globally attracting equilibrium point. The
extension to higher dimensional systems is developed in full
detail in ref 21. The main difference betweenn ) 2 andn > 2
is that in the latter case the normal subspaceNz at any pointz
of the phase space is no longer one-dimensional.

Consider an invariant one-dimensional manifoldW (an orbit
with starting pointz), and let

Equation 12 expresses the evolution of normal and tangent
vectors along the manifoldW. Because the normal sub-bundle
is not invariant, the normal projectorΠφt(z) at the image point
φt(z) is used in order to obtain the normal componentnt(z) at
the image point. Let us introduce the quantities

The quantitiesΛR and Λω are referred to as the Lyapunov
R- and ω-numbers of the manifoldW. The definitions ofΛR

andΛω adopted here are similar to the definition of the quasi-
Lyapunov numbers given by Fenichel.38 By using the same
technique applied by Fenichel,38 one can prove thatΛR andΛω

do not depend on the starting pointz ∈ W and are intrinsic
properties associated with the manifoldW.

For dynamical systems possessing a unique asymptotically
stable equilibrium pointzeq, it is clear that the behavior fort f
∞ coincides with the behavior of the system in the neighborhood
of zeq, and therefore, theω-Lyapunov number for any invariant
manifold W can be shown to be expressed as the ratio of the
eigenvalues of the Jacobian matrixF*(zeq). In a similar way,
the R-Lyapunov number accounts for the normal-to-tangent
stretching behavior of a vector at infinity, along the manifold.

In order to show how theR/ω-Lyapunov numbers can be
used in defining the properties of the slow manifolds, let us
first consider the simple case of a linear two-dimensional
autonomous system dz/dt ) Az, associated with a constant
matrix A, possessing a pair of real and negative eigenvalues
(-λs, -λf), with λs < λf.

Let Es and Ef be the slow and fast eigenspaces associated
with the eigenvalues-λs and -λf, respectively, and spanned
by the unit vectorses andef. The slow and fast manifoldsW s

andW f can be thus defined asW r ) {z|z ) êer, ê ∈ (-∞, ∞)},
wherer ) s, f. TheR/ω-Lyapunov numbers onW s andW f and
on any other invariant manifoldW (which can be viewed as
the union of the forward and backward trajectories starting at
any pointznot belonging either toW s or toW f) are reviewed49

in Table 1 (note: it is important to observe that for this class
of systems any invariant manifold is also exponentially attract-

ing). The analysis of Table 1 shows that the slow manifoldW
s is characterized byR/ω-Lyapunov numbers both greater than
1. Conversely, the fast manifold is characterized by Lyapunov
numbers both strictly smaller than 1; for any other invariant
manifold,Λω > 1 andΛR < 1. Indeed, for anyW * W s, W f,
the scaling fort f ∞ (i.e., close to the equilibriumzeq) of
tangential vector norms is controlled byλs, and the normal
vectors decay as e-λft; for t f -∞, tangential vectors grow as
e-λft and normal vectors as e-λst.

Therefore, the slow invariant manifoldW s can be discrimi-
nated from all the other invariant manifoldsW f or W for its
peculiar behavior fort f -∞, as it is the unique invariant
manifold for whichΛR > 1, whereas the fast manifoldW f is
the only invariant manifold for whichΛω < 1.

This result can be readily extended to a nonlinear system (eq
1) possessing a unique globally attracting equilibrium pointzeq

(henceforth, we will consider exclusively this case, and there-
fore, this specification will be omitted). In the extension to
nonlinear systems, it is convenient to view any one-dimensional
invariant manifold as a curve possessing the equilibrium point
zeq as one of its endpoints. Therefore, the slow manifoldW s

defined for the linear system considered above could be viewed
as the union of two distinct slow manifoldsW1

s ) {z|z ) êes,
ê ∈ [0, ∞)}, W2

s ) {z|z ) êes, ê ∈ (-∞, 0]}. Although this
distinction seems rather artificial for linear systems, it is a
convenient one for a proper definition of slow manifolds in
nonlinear dynamics.

We are now able to formalize the geometric definitions for
slow/fast manifolds and global slow/fast manifolds.

Given the dynamical system eq 1, a global 1-D slow manifold
is an invariant, exponentially attracting (i.e., linearly stable) one-
dimensional manifold for whichΛR > 1 andΛω > 1. A global
1-D fast manifold is an invariant, exponentially attracting one-
dimensional manifold for whichΛR < 1 andΛω < 1.

From the analysis of linear systems, we know that the peculiar
feature of a slow manifold is essentially the vector scaling for
t f -∞ (quantified by theR-Lyapunov numberΛR > 1) and
a fast manifold is characterized by the vector scaling fort f ∞
(quantified by theω-Lyapunov numberΛω < 1).

For this reason, it is convenient to give another, weaker
definition of slow/fast manifolds, exclusively based on their
asymptotic backward/forward behavior in time.

Given the dynamical system eq 1, a generalized 1-D slow
manifold is an invariant, exponentially attracting one-dimen-
sional manifold for whichΛR > 1. A generalized 1-D fast
manifold is an invariant, exponentially attracting one-dimen-
sional manifold for whichΛω < 1.

Obviously, a global slow (fast) manifold isa fortiori a
generalized slow (fast) manifold, but the opposite does not hold.
For example, let us consider a generalized slow manifoldW
and suppose thatΛω < 1. This means that the dynamics along
W in the neighborhood ofzeq behaves as on a local fast
manifold. Actually, in this case, the invariant manifoldW is a
generalized slow manifold and a generalized fast manifold, at
the same time. We refer to this particular situation as anR-ω
inversion. TheR-ω inversion cannot occur in linear systems
but is frequent in nonlinear models, in association with local
bifurcations at the points-at-infinity (see section 4).

nt(z) ) Πφt(z)[φt
/(z) n0] n0 ∈ Nz

ct(z) ) φt
/(z) c0 c0 ∈ Cz (12)

Λω ) lim
tf∞

log||nt(z)||
log||ct(z)|| z ∈ W

ΛR ) lim
tf-∞

log||nt(z)||
log||ct(z)|| z ∈ W (13)

TABLE 1: r/ω-Lyapunov Numbers along the Invariant
Manifolds of a Linear Autonomous Two-Dimensional System

manifold Λω ΛR

W s λf/λs > 1 λf/λs> 1
W f λs/λf < 1 λs/λf < 1
W λf/λs > 1 λs/λf < 1
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The phenomenon ofR-ω-inversion for a generalized slow
manifold can be easily understood by analyzing the local
properties in the evolution of normal and tangential vectors along
the manifold. This can be done by introducing the pointwise
stretching ratior(z)

The caseων(z) > 0 is not relevant to our analysis, because we
are always assuming thatW is an exponentially attracting
manifold. If r(z) > 1 andωτ(z) < 0, normal vectors shrink at
z faster than tangential vectors. Conversely, ifr(z) < 1 and
ωτ(z) < 0, vector dynamics tangent to the manifold is faster
than normal vector shrinking. Ifr(z) < 0, thenωτ(z) > 0; that
is, tangential vectors stretch exponentially and normal vectors
contract. Different diagrams illustrating the behavior of the
pointwise stretching ratior(x) and the occurrence ofR-ω
inversion for the Semenov model are reported in section 3.2
(see Figure 4A,B).

For generic nonlinear systems, a generalized (or global) one-
dimensional slow manifoldW is heterogeneous ifr(z) is not
constant forz ∈ W. A generalized (or global) one-dimensional
slow manifoldW is inverting if there is a pointz* ∈ W and an
open neighborhoodUz

/ of z*, such thatr(z) < 1 for z ∈ W ∩
Uz*.

From the physical point of view, the occurrence of inversion,
i.e., the existence within a global slow manifoldW of regions
wherer(z) < 1, is the indicator of some local “pathology” in
the dynamical behavior of the system nearW. Namely, although
W is globally attracting, there are portions ofW (the inverting
regions) in which nearby orbits to the manifold are almost
neutrally attracted; i.e., they are practically parallel to the slow
manifold itself. This is a consequence of the fact that normal
perturbations decay more slowly than tangential ones, and the
overall phase-space structure within an inverting region appears
as a bundle of parallel orbits to the slow manifold. This situation
is clearly depicted in Figures 1B and 2B. The occurrence of
inversion has significant implications in model reduction, as
discussed in section 5.2, and this represents the main motivation
for the introduction of this concept.

By definition, a generalized slow manifold, for whichΛω <
1, is inverting, becauser(z) < 1 in the neighborhood ofzeq.
However, even a global slow manifoldW may be inverting at
points other thanzeq. The occurrence of inversion influences
the global dynamics aroundW. In the next section, we apply
the concepts introduced above to the analysis of slow/fast
manifolds of the Semenov model.

3.2. Slow/Fast Manifolds,R-ω Inversion, and Heteroge-
neity in the Semenov Model.Let us consider the Semenov
model. For this system, the manifoldWx

+ ) {z|y ) 0, x g 0}

is an invariant manifold characterized by tangential and normal
stretching ratesωτ(x) ) -ε-1δ andων(x) ) -q(x), respectively.
Becauseων(x) < 0 at each point of the manifold,Wx

+ is
linearly stable (i.e., exponentially attracting). Moreover, it is
characterized by the followingR/ω-Lyapunov number

Therefore, there exists a critical value ofε, namelyεc(δ,â)
defined as

3.2.1. Discussion forε < εc. Forε < εc, the manifoldWx
+ is

a global fast manifold because bothΛω < 1 andΛR < 1 hold.
Moreover, forε < εc at each point on the manifold,ωτ < 0 and
r(x) ) q(x)/(ε-1δ) e q(∞)/(ε-1δ) ) e1/â/(ε-1δ) < 1; i.e.,
tangential vectors shrink faster than normal vectors and the
global fast manifold is noninverting.

This case corresponds to the phase-space diagrams reported
in Figure 1A,B, showing the existence of a monotonic global
slow manifoldW1

s for both casesâ > â* (Figure 1A) andâ <
â* (Figure 1B). Similarly, all the global slow manifolds shown
in Figure 2A (â > â*) and Figure 2B (â < â*) correspond to
values ofε andâ such thatε < εc(δ,â).

The dynamical properties along the global slow manifold for
ε < εc are depicted in Figure 4A,B for values ofâ above and
below the critical valueâ* ) 1/4.

Figure 4A shows the stretching rater(x) vsx along the global
slow manifoldW1

s (computed by MLA) forâ ) 0.31 > â*
and several values ofε < εc. We first observe from eqs 15 and
16 that (i) forx f ∞, r(x) f ΛR > 1 and forx f 0, r(x) f Λω

> 1, so that the invariant manifolds are global slow manifolds,
and (ii) theR-Lyapunov number decreases for increasing values
of ε in such a way thatΛR f 1 for ε f εc (for δ ) 1, â )
0.31, the critical value ofε is εc ) 3.97× 10-2). Moreover, for
very small values ofε, the global slow manifold is noninverting
(curve a and b in Figure 4A); forε ) 10-2, there exists an
intermediate region along the manifold at whichr(x) < 1
(inversion).

A similar situation occurs forâ ) 0.21< â* and ε < εc, as
depicted in Figure 4Bsin this case, the critical value isεc )
8.55 × 10-3salthough the dynamical picture of vector-norm
dynamics along the global slow manifold is slightly more
complex. First, inversion occurs for any value ofε < εc.
Moreover, curves a and b, corresponding toε ) 10-5 and 10-4,

Figure 4. Stretching ratior(x) vs x along the global slow manifolds. (A)â ) 0.31> â*. Line a refers toε ) 10-4, line b toε ) 10-3, and line
c to ε ) 10-2. (B) â ) 0.21< â*. This figure depicts the absolute value ofr(x), because the tangential stretching rate may attain both negative and
positive values. Line a refers toε ) 10-5, line b to ε ) 10-4, line c to ε ) 10-3, line d to ε ) 5 × 10-3. The dotted line indicatesr ) 1.

r(z) )
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-1δ
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ΛR )
-q(∞)

-ε
-1δ

) e1/â

ε
-1δ

) {>1 for ε > δe-1/â

<1 for ε > δe-1/â
(16)

εc(δ,â) ) δe-1/â (17)
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respectively, show the occurrence of positive tangential stretch-
ing rates along the global slow manifoldW1

s.
3.2.2. Discussion forε > εc. For ε > εc(δ,â), the manifold

Wx
+ is a generalized slow manifold (ΛR > 1) exhibitingR-ω

inversion (becauseΛω < 1) and is inverting in the interval [0,
x*), x* ) log(ε-1δ)/(1 - â log(ε-1δ)) becauser(x) < 1 for x ∈
[0, x*) and r(x) > 1 for x ∈ (x*, ∞). This case corresponds to
the phase-space diagrams reported in Figure 1C,D, showing the
blow-up of the global slow manifold and the birth of the
generalized slow manifoldWx

+ that, close to the equilibrium
point zeq, is tangent to the fast eigendirection.

Therefore, we conclude that the basic criterion to distinguish
between the two completely different dynamical behaviors of
the Semenov system exhibited in Figure 1A,B and Figure 1C,D
is based on the comparison betweenε (for fixed values ofδ
and â) and the critical valueεc(δ,â). The behavior ofεc as a
function of â for δ ) 1 is reported in Figure 5.

In the next section, by making use of the Poincare´ projected
system, we show that the existence of global (or generalized)
slow manifolds and their properties are controlled by a tran-
scritical bifurcation of the point-at-infinity occurring atε ) εc-
(δ,â).

4. PoincaréProjected System and Bifurcations of
Points-at-Infinity

A (generalized/global) slow manifold is geometrically rep-
resented by the graph of an exponentially attracting, connected,
and infinitely extended invariant curve characterized byω- and
R-Lyapunov numbers greater than one. TheR-Lyapunov number
accounts for the normal-to-tangent stretching behavior of a
vector at infinity, i.e., far from the equilibrium point, along the
manifold. In order to investigate this behavior at infinity, it is
extremely useful to make use of a compactification39 of the
phase space, i.e., the one-to-one mapping of the phase space
onto a compact domain.

The idea of analyzing the global behavior of a planar
dynamical system by using a stereographic projection of the
sphere onto the plane is due to Bendixson.40 A more convenient
approach for studying the behavior of trajectories “at infinity”
is to use the so-called Poincare´ sphere, where we project from
the center of the unit sphere (S2 ) {(X, Y, Z) ∈ R3|X2 + Y2 +
Z2 ) 1}) onto the (x, y) plane, tangent toS2 at either the north
or the south pole. This type of central projection has the
advantage that the critical points-at-infinity are spread out along
the equator of the Poincare´ sphere.

Therefore, the structure and properties of invariant manifolds
can be further addressed by introducing the Poincare´ projected
system22,40 associated with eq 1, by defining the following
coordinate transformation (throughout this section, we consider
two-dimensional systems):

, which is a homeomorphism, the inverse transformation of
which is given byzh ) uh/[1 - Σk)1

2 uk
2]1/2, h ) 1, 2.

Under this coordinate change,R2 is mapped onto the two-
dimensional unit sphereS2 ) {u ) (u1, u2)|u1

2 + u2
2 e 1},

and the behavior on the boundary∂S2
1 ) {u|u1

2 + u2
2 ) 1}

corresponds to the behavior at infinity for eq 1.
Let F1 andF2 be the entries of the vector fieldF associated

with eq 1. The Poincare´ projected system associated with eq 1
is given by

The introduction of the Poincare´ projected system eq 19
(henceforth indicated as Pp-system, for short) permits the
analysis of the global behavior of eq 1 in terms of the properties
of the equilibrium points-at-infinity. In fact, let us consider an
autonomous linear system dz/dt ) Az where the matrixA
possesses two real and distinct eigenvalues, the unit eigenvectors
of which areeh (||eh|| ) 1), h ) 1, 2. Elementary algebraic
manipulations show that the Pp-system possesses five equilib-
rium points: (i) the equilibrium pointueq ) 0 ) (0, 0)
corresponding to the unique equilibrium pointzeq ) 0 of the
original system and (ii) four equilibrium points-at-infinityueq

∞,(

) (eh, h ) 1, 2. Therefore, the equilibrium points-at-infinity
correspond to the invariant directions associated with the one-
dimensional eigenmanifolds of the system. This observation can
be extended to nonlinear systems and leads to a simple
geometric definition of global/generalized slow/fast manifolds.

For a dynamical system possessing a unique globally attract-
ing equilibrium pointzeq ) 0, global/generalized one-dimen-
sional invariant manifolds are the heteroclinic orbits of the Pp-
system connectingueq ) 0 to equilibrium points-at-infinity
ueq

∞ , such that theR/ω-Lyapunov numbersΛω andΛR possess
prescribed (and specific) properties (as discussed in section 3.1).
This is the geometric picture discussed by Davis and Skodje.22

The concept of the global/generalized invariant manifolds as
heteroclinic orbits connectingzeq to a point-at-infinity permits
a unified view of theR/ω-Lyapunov numbers, defined in section
3.1. Indeed, asΛω expresses the local scaling of the normal-
to-tangent vector norms along a given manifoldW in the
neighborhood ofzeq, theR-Lyapunov numberΛR accounts for
the local scaling of the same quantity in the neighborhood of
the point-at-infinity along the heteroclinic connection.

4.1. Bifurcations and Manifold Structure in the Semenov
Model. The introduction of the Pp-system allows us to address
the global qualitative properties of the Semenov model and its
global changes in the invariant manifold structure viewed as
local bifurcations associated with the points-at-infinity. This
approach is particularly simple for the Semenov model as forx
f ∞, q(x) f e1/â, and therefore, the behavior at infinity is
described by the linear system dz/dt ) A∞z, where

The matrixA∞ admits as eigenvaluesλ1
∞ ) -ε-1δ andλ2

∞ )
-e1/â, the eigenvectors of which aree1

∞ ) (1, 0) ande2
∞ ) (C,

Figure 5. Log-normal plot ofεc as a function ofâ for δ ) 1.
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C (e-1/âδ - ε)), respectively, whereC is a normalization
constantC ) [1 + (e-1/âδ - ε)2]-1/2. The equilibrium points-
at-infinity of the Pp-system are associated with the eigendirec-
tions ofA∞. It follows that the Pp-system admits two equilibrium
points-at-infinity, ueq,1

∞ ) e1
∞ and ueq,2

∞ ) e2
∞ within the semi-

circle u1 > 0.
The pointueq ) 0 is globally attracting, and the two points-

at-infinity ueq,1
∞ andueq,2

∞ are unstable for the Pp-system defined
on the Poincare´ circle S2. They are either saddles or unstable
sources. To decide it, consider the dynamics of the Pp-system
restricted to the equator of the Poincare´ sphere, i.e., on the
boundary∂S2

1 ) {(u1, u2)|u1
2 + u2

2 ) 1}, which is an invariant
set for the Pp-system and along whichu1 ) cosθ, u2 ) sin θ,
θ ∈ [0, 2π].

By enforcing eq 19, it follows that the dynamics in the angular
variableθ on ∂S2

1 satisfies the equation

whereŭh ) duh/dt. The substitution in eq 21 of the expression
for A ) A∞ eq 20, deriving from the behavior at infinity of the
Semenov model, yields

From eq 22, it follows that there are two equilibrium points,θ1
/

) 0 (associated withueq,1
∞ ) and θ2

/ ) arctan(e-1/âδ - ε)
(associated withueq,2

∞ ).
For ε < εc ) e-1/âδ, θ1

/ is unstable;θ2
/ > 0 is stable on∂S2

1.
For ε > εc, θ2

/ moves into the fourth quadrant and loses
stability, andθ1

/ becomes stable, as depicted in Figure 6.
Therefore, the analysis of the Pp-system restricted to the

equator of the Poincare´ sphere eq 22 clearly shows that, forε

) εc, a transcritical bifurcation41 occurs at infinity in the
Semenov model, corresponding to the exchange of stability
between the two equilibrium points-at-infinity,θ1

/ (associated
with ueq,1

∞ ) and θ2
/ (associated withueq,2

∞ ). The bifurcation
diagram for â ) 0.21 andδ ) 1 is reported in Figure 7.
Actually, the bifurcation locus in the parameter space is
expressed by the equation

and, by consideringε as the bifurcation parameter, we find that
the transcritical bifurcation occurs atε ) εc ) e-1/âδ, in
agreement with eq 17.

The transcritical bifurcation at infinity controls the structure
of the slow invariant manifolds and is responsible for the blow-
up of the global slow manifold in the first quadrant of thex,y-
plane, already observed in section 3.

Indeed, forε < εc, the point-at-infinityueq,2
∞ is a saddle and

is attracting on∂S2
1. This means that any infinitely long

material line (in the Pp-system, this corresponds simply to a
material line connectingueq ) 0 to a generic point on∂S2

1,
with u1 > 0) is attracted toward the global slow manifold
represented by the invariant heteroclinic orbit connectingueq

to ueq,2
∞ (curve W1

s connectingP0 and P2 in Figure 6A).
Conversely, thex-axis (or, more precisely, the non-negative
portion of thex-axis, corresponding to the manifoldW1

f in
Figure 6A connectingP0 andP1) is a global fast manifold of
the system, connectingueq to the unstable point-at-infinity
ueq,1

∞ . The dynamical properties along the global slow and fast
manifolds forε < εc have been analyzed in detail in section
3.1 (Figure 4A,B).

For ε > εc, the global structure of the invariant manifolds
changes dramatically. The global slow manifold blows up,
because at infinityueq,2

∞ moves into the fourth quadrant and
becomes unstable, and correspondingly,ueq,1

∞ becomes stable
on ∂S2

1 after the transcritical bifurcation.
The exchange of stability betweenueq,1

∞ and ueq,2
∞ corre-

sponds to an exchange of stability between the global slow
manifold W1

s (defined forε < εc) andW1
f. Indeed, forε > εc,

ueq,1
∞ is a saddle and is attracting on∂S2

1 and the positive part
of thex-axis is a heteroclinic orbit connectingueq to the point-
at-infinity ueq,1

∞ characterized by the Lyapunov-numbersΛω <
1 andΛR > 1. Therefore, forε > εc, it behaves as the unique
generalized slow manifold defined in the physically admissible
region of the phase space.

Figure 8A,B shows the manifold structures for the Semenov
model on the Poincare´ circle for â ) 0.21,δ ) 1, ε ) 10-4 <
εc (Figure A), andε ) 10-2 > εc (Figure B). Although very
close to P1, the point P2 (corresponding toueq,2

∞ ) is indeed
different fromP1. Global and generalized slow manifolds are
obtained by the MLA technique.

For the sake of completeness, Figure 8A,B also shows the
behavior of the heteroclinic orbitW2

s connectingueq (point P0)
to the point-at-infinityP3 ) (0, -1) (corresponding to the point
(xc, -∞) in the x,y-plane) and representing the unique global
slow manifold in the nonphysically admissible region (negative
reactant concentrations) of the phase space.

The blow-up of a global slow manifold forε > εc makes
particularly evident the occurrence of finite-length slow mani-
folds associated with the local behavior of the system close to

Figure 6. Pictorial representation of the points-at-infinity, their stability,
and the structure of slow and fast manifolds for the Semenov model:
(A) ε < εc; (B) ε > εc. The dashed line shows the boundary of the
admissible phase spacex ) xc ) -1/â. PointsP1 andP2 correspond to
the equilibrium points-at-infinityueq,1

∞ (or θ1
/) and ueq,2

∞ (or θ2
/),

respectively. The point (xc, 0) in thex,y-plane is represented by the
point P4 on ∂S2

1.

dθ
dt

)
u1ŭ2 - u2ŭ1

u1
2 + u2

2
) A21u1

2 - A12u2
2 + (A22 - A11)u1u2

(21)

dθ
dt

) G(θ) ) -ε
-1e1/â sin2 θ + (ε-1δ - e1/â) sin θ cosθ

(22)

b(δ,â,ε) ) e-1/âδ - ε ) 0 (23)

Figure 7. Transcritical bifurcation occurring in the Semenov model
at the point-at-infinity (â ) 0.21, δ ) 1), by consideringε as a
parameter. Solid lines are the stable branches, dotted lines the unstable
branches.

13454 J. Phys. Chem. A, Vol. 110, No. 50, 2006 Creta et al.



zeq. This phenomenon can be appreciated by analyzing the
phase-space diagram in thex,y-plane reported in Figure 1C (â
) 0.31,ε ) 5 × 10-2 > εc) as well as the different orbits in
the first quadrant of the Poincare´ circle obtained from the
numerical integration of the Pp-system associated to the
Semenov model forâ ) 0.21 andε ) 10-2 > εc (see Figure
8B). The classification of these finite-length slow manifolds is
addressed in the next subsection.

4.2. Transient and Hartman-Grobman Slow Manifolds.
The definition of slow/fast manifolds as heteroclinic orbits
connecting zeq to equilibrium points-at-infinity is still not
exhaustive, and a further categorization is needed to account
for what can occur in nonlinear systems. To show this, consider
again the Semenov model.

This model possesses the characteristic property that the phase
space does not coincide withR2, because the half-plane to the
left of xc ) -1/â corresponds to negative temperatures. The
admissible phase space is therefore a domain ofR2 with
boundary.

The invariant manifoldWx ) {z|y ) 0, x ∈ [xc, ∞)} splits
into two distinct submanifolds (see Figure 8): a heteroclinic
orbit connecting pointsP0 and P1 (representing a global fast
manifold W1

f ) Wx
+ for ε < εc and a generalized slow

manifold W1
s for ε > εc) and the “finite-length” fast manifold

Wt
f ) {(x, y)|y ) 0, x ∈ [-1/â, 0]} connectingP0 to the point

on the boundaryP4. The occurrence of the finite-length manifold
Wt

f in the Semenov model leads to the definition of proper and
transient slow/fast manifolds.

A proper (global or generalized) slow manifold is geo-
metrically represented by the graph of an exponentially attract-
ing, connected, and infinitely extended invariant curve. It
represents the invariant exponentially attracting heteroclinic
connection between the equilibrium pointzeq and a point-at-
infinity for which ΛR > 1 (Λω < 1 for fast manifolds). In the
case of a proper global slow (fast) manifold, the further condition
Λω > 1 (ΛR < 1 for fast manifolds) holds. Invariance and
infinite extension imply that a proper invariant manifold is
actually properly invariant; i.e., the image of the manifold
through the phase flow concides with the manifold itself,φt-
(W ) ) W for any t. Moreover, the definition of proper
manifolds as heteroclinic connections between the equilibrium
point, and a given saddle point-at-infinity ensures their unique-
ness.

A transient slow (fast) one-dimensional manifoldW is a
finite-length invariant exponentially attracting manifold along
which r(z) > 1 (r(z) < 1 for fast manifolds) forz ∈ W.
Therefore, a transient manifold is not properly invariant, because
φt(W ) ⊂ W for t > 0, and limtf∞φt(W ) ) zeq. This is the reason
of the wording “transient” for this class of invariant geometric
structures. Moreover, although proper invariant manifolds may
be inverting, as extensively addressed in section 3 for the
Semenov model, transient manifolds are, by definition, nonin-

verting, and this is the reason their occurrence may be significant
in the local behavior of a dynamical system close to the
equilibrium pointzeq (see section 5).

Transient manifolds may originate from two distinct geometric/
dynamical phenomena: either (i) they are connections between
zeq and a point on the boundary (such asWt

f depicted in Figure
8), or (ii) they are local stable/unstable manifolds associated
with the hyperbolic equilibrium pointzeq, such as the finite-
length slow manifolds occurring in the Semenov model forε

> εc, which are revealed by the coalescence of orbits as depicted
in Figure 1C and Figure 8B. (It is important to stress once again
that we are considering dynamical systems possessing a unique,
globally attracting equilibrium point. More complex phenom-
enologies may arise for systems possessing multiple equilibrium
points or stable oscillatory behaviors.)

In a two-dimensional system, a transient slow manifold close
to zeq is just a local slow manifoldWzeq,loc

s , which is tangent to
the slow eigenspace atzeq. This kind of transient manifold can
be referred to as the Hartman-Grobman manifold, due to the
implications of the Hartman-Grobman theorem.39 It is clear
from the definition that the Hartman-Grobman slow manifold
does not need to be unique, as there exists different ways of
constructing them; certain conditions are maintained: (i) they
are tangent to the slow eigenspace at the equilibrium pointzeq,
and (ii) they are noninverting.

A simple way for constructing the transient Hartman-
Grobman slow manifold for the Semenov model is presented
in Appendix B.

To sum up, local bifurcations at the point-at-infinity of the
Pp-system provide a simple way for understanding the global
behavior and the nature of the slow/fast invariant manifolds.

In the Semenov model for thermal explosions, a qualitative
change in the manifold structure occurs as a consequence of a
transcritical bifurcation at infinity. This bifurcation leads to the
transition from a global slow manifold (defined forε < εc) to
a generalized slow manifold (forε > εc) that close tozeq is
tangent to the fast eigenspace of the unique equilibrium point.
In all those cases for which either a global slow manifold does
not exist or still exists, it is characterized by inversion close to
zeq; the local behavior close to the equilibrium point is controlled
by the occurrence of a Hartman-Grobman slow manifold,
which is a finite arc representing the geometric memory of the
dynamical behavior prevailing close tozeq. In this case, the
transient finite-length Hartman-Grobman may play an impor-
tant role in connection with the application of model reduction
methods, especially if one is interested in finite portions of the
phase space close to the equilibrium, as discussed in section
5.2.

4.3. Other Models of Combustion Kinetics.The occurrence
of local bifurcation at infinity modifying the structure of the
invariant slow manifolds is not a peculiar property of the
Semenov model, but it is present in other combustion and
explosive systems. In the Semenov model, the transcritical
bifurcation characterizing the slow-manifold structure is a
consequence of the interplay between the Arrhenius monotonic
and saturating behavior of the kinetic rate coefficients and the
heat losses at the reactor walls. It is therefore highly plausible
that similar local bifurcations at infinity may occur also for
higher dimensional combustion systems characterized by an
Arrhenius-type functional dependence of the rate coefficients
on temperature. What is remarkable is that qualitatively similar
features may occur for other, completely different models of
combustion kinetics and explosions. This is the case of the
classical chain-branching model for combustion and explosions

Figure 8. Manifold structure of the Semenov model (â ) 0.21,δ )
1) on the Poincare´ circle: (A) ε ) 10-4; (B) ε ) 10-2. The thicker
dotted line in the second and third quadrants is the boundary of the
phase spacexc ) -1/â. The dotted lines depict typical orbits.
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in isothermal conditions, which is characterized by a quadratic
nonlinearity. This reflects into a quadratic nonlinearity in the
associated Pp-system, and the Semenov model behaves at
infinity as a linear system.

We analyze a simplified kinetic model usually adopted to
illustrate how chain-branching systems may exhibit explosive
behaviors.30 Let R, P, and C be the reactant, the product, and
the chain carrier, respectively. The initiation, propagation, and
termination steps are, respectively, Rf C, C + R f P + RC,
and Cf P, whereR is the branching constant, equal to unity
for straight-chain reactions.

By indicating withki, kp, andkt the rate constants of the three
steps, we read the rate equations for the reactant and chain
carrier as

where cR, cC are molar concentrations. By introducing the
following dimensionless variables and parametersx ) cR/cR° , y
) cCkp/ki, t ) kiτ, ε ) ki/(kp/cR° ), andγ ) kt/(kp/cR° ), wherecR°
is a reference reactant concentration, one finds that the rate
equations eq 24 attain the form

whereP1(x,y) ) -x, P2(x,y) ) -xy, Q1(x,y) ) ε-1(x - γy),
andQ2(x,y) ) ε-1(R - 1)xy.

If ε is a small parameter (which physically means that the
initiation is slower than the propagation step), the chain-
branching model is readily expressed in a singularly perturbed
form, wherex andy are the slow and fast variables, respectively.

Let z ) (x, y), so that eq 25 can be expressed in compact
form as dz/dt ) F(z,ε,R). This system possesses a unique
equilibrium point zeq ) (0, 0), and the eigenvalues of the
Jacobian matrix at the equilibrium pointF*(zeq,ε,R) are-1 and
-γε-1. Provided thatγε-1 . 1 (henceforth, we consider
exclusively this case), there is a significant time scale separation
in the neighborhood ofzeq. The eigenspace associated with the
slow eigenvalueλs ) -1 is given byEzeq

s ) {v ) (V1, V2)|V1/V2

) γ - ε}, and the fast eigenspace (associated withλf ) -γε-1)
is Ezeq

f ) {v ) (V1, V2)|V1 ) 0}. Therefore, system properties
close to the equilibrium pointzeq are unaffected by the value
of the branching constantR.

Throughout this paragraph, we setγ ) 2 and let the other
two parametersε andR vary, keepingγε-1 > 10, corresponding
to more than 1 order of magnitude in the time scale separation
at the equilibrium point.

It readily follows from eq 25 thatWy ) {(x, y)|x ) 0} is an
invariant manifold of the system. It can be split into the two
different invariant manifoldsWy

+ ) {(x, y)|x ) 0, y g 0} (in
the physically admissible region) andWy

- ) {(x, y)|x ) 0, y e
0}.

By analysis of the behavior of the tangent and normal
stretching rates alongWy

+ (with the assumptionγε-1 > 10), it
follows that

This implies thatWy
+ is a properly invariant exponentially

attracting generalized slow manifold tangent to the fast eigen-
direction at the equilibrium pointzeq for each value of the
branching constantR. Conversely, the manifoldWy

- is lin-
early unstable becauseων(y) ) -1 - y > 0 for y < -1.

A complete picture of the structure and properties of invariant
manifolds can be obtained by analyzing the Pp-system associated
with the chain-branching model. Equilibria at infinity for the
m ) 2 degree polynomial system eq 25 occur at the pointsueq

∞

) (u1, u2) on the equator of the Poincare´ sphere∂S2
1 and

satisfy the equation

or, equivalently at polar anglesθ andθ + π, are solutions of
the equation

Therefore, forR * 1, the system eq 25 possesses six equilibrium
points-at-infinity corresponding to polar anglesθ1

/ ) 0, θ2
/ )

π, θ3
/ ) π/2, θ4

/ ) 3π/2, θ4
/ ) arctan(δ), andθ6

/ ) arctan(δ) +
π, whereδ ) (1 - R)ε-1.

The flow on ∂S2
1 is counterclockwise at points correspond-

ing to polar anglesθ whereG(θ) > 0 and is clockwise at points
corresponding to polar anglesθ whereG(θ) < 0. Equilibrium
points-at-infinity and the flow on the equator of the Poincare´
sphere∂S2

1 are depicted in Figure 9 for the two different cases
δ > 0 (left panel) andδ < 0 (right panel).

For δ > 0 (i.e.,R < 1), pointsP1 andP3 are stable on∂S2
1

(and are saddle nodes on the Poincare´ circle S2), and P5 is
unstable on∂S2

1 (and is an improper unstable node onS2).
Because the chain-branching model is a second-degree poly-
nomial system, the behavior of the Pp-system near the antipodal
equilibrium pointsP2, P4, andP6 is topologically equivalent to
the behavior nearP1, P3, and P5, respectively, with reversed
flow direction.

By decreasing the value ofδ, we find that the pointP5 moves
toward pointP1, it collapses onP1 for δ ) 0, and forδ < 0, P5

moves into the fourth quadrant and becomes an unstable
improper node. Correspondingly, forδ < 0, pointP1 becomes
unstable on∂S2

1.
Therefore, by focusing on the dynamics restricted to∂S2

1,
we observe an exchange of stability between pointsP5 andP1,
i.e, a transcritical bifurcation at the critical value of the parameter
δc ) 0 (corresponding toR ) 1), as clearly shown in Figure 10
where the polar anglesθ5

/ and θ1
/ of equilibrium points-at-

infinity P5 andP1 and their stability (with respect to the flow
on ∂S2

1) are shown as a function of the bifurcation parameter
δ.

For the chain-branching model, as for the Semenov model,
the occurrence of a transcritical bifurcation of the points-at-
infinity determines the blow-up of the global slow manifold

dcR

dτ
) -kicR - kpcRcC

dcC

dτ
) kicR + (R - 1)kpcRcC - ktcC (24)

dx
dt

) -x - xy ) P1(x,y) + P2(x,y)

dy
dt

) ε
-1[x + (R - 1)xy - γy] ) Q1(x,y) + Q2(x,y)

(25)

ωτ(y) ) -γε
-1 < 0 ων(y) ) -1 - y < 0

r(y) ) 1 + y

γε
-1

(26)

Λω ) lim
yf0

r(y) < 1 ΛR ) lim
yf∞

r(y) > 1 (27)

u1Q2(u1,u2) - u1P2(u1,u2) ) u1u2[u1(R - 1)ε-1 + u2] ) 0
(28)

G(θ) ) cosθ Q2(cosθ,sinθ) - sin θ P2(cosθ,sinθ)

) cosθ sin θ [(R - 1)ε-1 cosθ + sin θ] ) 0
(29)
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W1
s connecting the equilibrium pointzeq to the saddle node at

infinity P1 for δ > 0.
This phenomenon can be appreciated from the analysis of

Figure 11A,B showing the spatial behavior of phase-space orbits
(dotted lines) and invariant manifolds (continuous lines) in the
x,y-plane (x > 0, y > 0) for δ > 0 (panel A) and forδ < 0
(panel B). It can be observed that, forδ > 0, the system
possesses two coexisting (and in some sense competitive) slow
manifolds: the generalized slow manifoldWy

+ (connectingzeq

to the saddle nodeP3, stable on∂S2
1) and the global slow

manifold W1s (connectingzeq to the saddle nodeP1, stable on
∂S2

1) characterized by theω/R-Lyapunov numbersΛω ) γε-1

> 1 andΛR ) ∞ > 1.
Forδ < 0, the global slow manifold disappears and the spatial

behavior of phase-space orbits is controlled by the still existing
generalized slow manifoldWy

+ and by the transient Hartman-
Grobman slow manifold tangent to the slow eigendirection at
the equilibrium pointzeq.

To sum up, also for the chain-branching model, local
bifurcations at the point-at-infinity of the Pp-system provide a
simple way for understanding the global behavior and the nature
of the slow invariant manifolds. As for the Semenov model, a
qualitative change in the manifold structure occurs as a
consequence of a transcritical bifurcation at infinity. This
bifurcation leads to the transition from a global slow manifold
(defined for δ > 0 and coexisting with a generalized slow
manifold) to a generalized slow manifold (forδ < 0) that, close
to zeq, is tangent to the fast eigenspace of the unique equilibrium
point. Whenever a global slow manifold no longer exists, the
local behavior close to the equilibrium point is controlled by a
finite-length Hartman-Grobman slow manifold.

5. Explosions, Bifurcations, and Manifold Uniqueness

This section connects the analysis developed for the Semenov
model with the experimental results on thermal combustion
systems and on the occurrence of explosive behavior. Subse-
quently, the issue of slow manifold uniqueness and the implica-
tions of the results obtained for model simplification and
reduction of kinetic schemes are critically examined.

5.1. Explosions.The Semenov model is widely known for
being the paradigmatic example of explosive behavior in a
closed, perfectly mixed system, in which the instability caused
by an exothermic reaction is contrasted by the heat loss to the
surrounding. In the classic 1928 article,24 Semenov applied this
model to present a simple bifurcational analysis of explosions
grounded on the assumption of negligible reactant consumption,
which holds forε f 0.

Subsequently, several other authors have proposed different
explosion criteria for the Semenov system eq 10 under generic
operating conditions: Adler and Enig,27 van Welsenaere-
Froment,42 Morbidelli and Varma,28 just to quote some of the
most representative. For a general analysis, see Varma et al.
(1999).29

It is instructive to compare the experimental conditions typical
of explosive dynamics with the parameter values leading to the
transcritical bifurcation that modifies the structure and the
properties of the slow manifolds.

Figure 12 shows the bifurcation locus of the transcritical
bifurcations (curve b), and the explosion limit (curve a) for
kinetic and operating conditions corresponding to the methyl
nitrate decomposition studied by Gray et al. (1981).43 The
decomposition of the methyl nitrate (C3ON3) in the vapor phase
is highly exothermic and can be treated as a first-order reaction.
The heat of reaction atT ) 298 K is given by-∆H ) 1.505
× 105 J/mol and may be assumed to be independent of
temperature. Gray et al. performed experiments on a spherical
reactor (radius (R) ) 0.064 m, overall heat transfer coefficient

Figure 9. Critical points-at-infinity and flow on the equator of the
Poincare´ sphere∂S2

1 for the system eq 25: (A)δ > 0; (B) δ < 0.
Equilibrium points-at-infinityP5 andP6 correspond to polar anglesθ5

/

) arctan(δ) andθ6
/ ) arctan(δ) + π. Bold curvesW1

s andWy
+ in the

first quadrant represent the qualitative structure of the global and
generalized slow manifolds, respectively.

Figure 10. Polar anglesθ5
/ and θ1

/ of points P5 and P1 and their
stability (with respect to the flow on∂S2

1) as a function of the
bifurcation parameterδ: dotted line, unstable branch; continuous line,
stable branch.

Figure 11. Phase-space diagrams of the chain-branching model in the
x,y-plane (x g 0, y g 0): (A) γ ) 2, ε ) 5 × 10-2, R ) 0.95, i.e.,δ
> 0; (B) γ ) 2, ε ) 5 × 10-2, R ) 1.05, i.e.,δ < 0. Dotted curves are
phase-space orbits. Thick lines are global or generalized invariant
manifolds.

Figure 12. ε-δ plot of the bifurcation/explosion loci forγ ) 1/â )
33. Line a is the explosion limit according to the Adler-Enig criterion.
Line b is the bifurcation locus. Dots (b) correspond to the experimental
data by Gray et al. (ref 43) on the explosion limit for methyl nitrate
decomposition.
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(U) ) 3.0 J/(m2 s K)), in the temperature range (T) 510-570
K, corresponding to a value ofγ ) â-1 = 33 for different initial
pressures.

The region below curve a in Figure 12 corresponds to
explosive behavior for parameter values corresponding to the
experimental data by Gray et al.;43 the region on the right of
curve b corresponds to operating conditions “after” the blow-
up of the global slow manifold, where the system is character-
ized by a generalized slow manifold corresponding to thex-axis.

For the methyl nitrate decomposition, the experimental
conditions by Gray et al. correspond to the occurrence of
generalized slow manifolds, and this feature is generic for most
of the simple explosive reactions that can be described by means
of a first-order Semenov model (see, e.g., Varma et al. (1999)29

for a survey of several experimental systems in this category).
Specifically, in the case of azomethane ((CH3)2N2) decomposi-
tion analyzed by Allen and Rice,44 the dimensionless parameters
for the reaction areγ ) 1/â ) 39.8,δ ) 1.85, andε ) 9.66×
10-3; for catalytic hydrolysis of acetic anhydride studied by
Haldar and Rao,45 γ ) 35.2,δ ) 1.4, andε ) 7.46× 10-2. In
both cases,ε > εc and global dynamics are characterized by
the occurrence of a generalized slow manifold (see Figure 1C,D
for the phase-space portrait of the Semenov model in the
presence of a generalized slow manifold). All the above
observations indicate the physicochemical significance of the
distinction between global and generalized manifolds and the
genericity in the occurrence of the latter type of invariant
structures in explosive reacting systems. This observation is
further supported by the direct inspection of the phase portrait
depicted in Figure 1 for the Semenov model. Whenever a global
slow manifold exists (Figure 1A), the orbits converge smoothly
toward the global manifold, and no explosive trajectories occur.
The situation becomes slightly more unstable whenever a zone
of inversion (r(z) < 1) occurs (compare Figure 1B with Figure
1A); in contrast, sudden temperature variations, followed by a
rapid and almost complete reaction consumption, typical of
explosive conditions, characterize the presence of generalized
slow manifolds (as depicted in Figure 1D).

Throughout this Article, the slow manifold structure and the
dynamics within it have been characterized by means of the
Lyapunov numbersΛω and ΛR eq 13 and ultimately on the
comparison of tangential and normal stretching rates (e.g., the
definition of the stretching ratio eq 14). It is intriguing to
develop, within a unified formal apparatus, simple and consistent
criteria for detecting explosion conditions and identifying the
relevant explosion limits.

Following Thomas and Bowes26 and Adler and Enig,27 the
explosive behavior can be regarded as the occurrence of a local
accelerating behavior along system trajectories. Consequently,
the occurrence of explosions can be viewed as a tangential
instability, characterized by the fact that there exists a timet >
0 and a statez(t) along a system trajectory at which the
tangential stretching rateωτ is positive as well as the integral
of the tangential stretching rate,

The latter condition expresses the property that, at timet > 0,
||F(z(t))|| > ||F(z(0)|| (i.e., that the tangential dynamics is
accelerating). This follows from the relation||F(φt(z))|| )
||F(z)|| exp(∫0

t ωτ(z(t′)) dt′), which derives from eq 7. An
increase of the norm of the vector field at some time instantt
with respect to its initial value corresponds to a tangential
acceleration.

The two conditions expressed by eq 30 can be viewed as the
tangential-stretching-based (TSB) definition of potentially ex-
plosive conditions (referred to as runaway conditions) for the
system. The locus in the parameter space at which these two
conditions hold, at least for some time instantt, with the second
replaced by an equality, defines the explosion limit according
to the TSB approach.

Equation 30 can be applied in the case of generic reaction
schemes. In the particular case of the Semenov model, eq 11,
let T(0) ) Tc (i.e., the coolant temperature coincides with the
initial reactant temperature, and let the reference concentration
scale be equal to the initial reactant concentration). Under these
assumptions, the initial conditions for eq 10 arex(t)0) ) 0,
y(t)0) ) 1.

Figure 13 shows the comparison of the explosion limit for
the Semenov system found according to the TSB approach and
with two classical and widely used criteria for runaway: the
criteria by Adler and Enig27 and by van Welsenaere and
Froment42 for γ ) â-1 ) 10. The ordinate variable is the group
(eψc,e), where e) 2.718... is the Napier number andψc,e is the
critical Semenov number (the groupψ ) δ-1 is referred to as
the Semenov number in the explosion literature).

The predictions of the TSB approach agree perfectly with
the Adler-Enig criterion forε-1 > 20 and are qualitatively
reasonable over the whole range ofε values. In fact, the region
ε-1 > 4 corresponds to operating conditions for which the
assessment of the explosion limit displays some intrinsic
problems, as also noted by Varma et al.29 who resorted to
parametric sensitivity analysis.

To sum up, the stretching analysis developed for manifold
characterization provides simple, objective, and reliable criteria
to assess the occurrence of explosive behavior in chemical
systems. A thorough analysis of this issue and the application
of the TSB criterion to complex kinetic schemes goes beyond
the scope of this Article and is developed in a forthcoming work.

5.2. Manifold Nonuniqueness and Reduction Methods.The
geometric characterization of manifold structure developed in
sections 3 and 4 permits us to highlight some controversies and
pathologies occurring in the application of model reduction
methods for chemical systems.

Let us preliminarily observe that there is a conceptual
difference between the geometric definition of slow invariant
manifolds and the corresponding concept used in model
reduction and kinetic diagnostics. This observation has been
presented by Davis and Skodje22 and can be further pinpointed
by enforcing the concepts introduced above.

Following Davis and Skodje,22 a (global/generalized) slow
manifold is a heteroclinic connection between a stable equilib-
rium point and a saddle point-at-infinity. Conversely, in many
engineering applications involving complex kinetic schemes,
one is interested in finite portions of the phase space either

ωτ(z(t)) > 0 ∫0

t
ωτ(z(t′)) dt′ > 0 (30)

Figure 13. Explosion limit for the Semenov model atγ ) 1/â ) 10.
Line a is the TSB criterion, line b the Adler-Enig criterion, and line
c the van Welsenaere-Froment criterion. In this figure,ψ ) 1/δ.

13458 J. Phys. Chem. A, Vol. 110, No. 50, 2006 Creta et al.



because the physically admissible region is bounded or because
the operating conditions of practical interest force the dynamics
to be confined solely in specific regions of the phase space.

The main issue is the following: if one is interested in a
finite-length slow manifold, by defining it under the conditions
that (i) it is invariant for eq 1, (ii) it is exponentially attracting,
and (iii) its normal perturbations decay faster than tangential
ones, there are eventually infinitely many structures possessing
these three properties.

To verify this statement via an example, consider the
Semenov model and a bounded setD containing the equilibrium
point, and define the setDLNH ⊂ D as the set of points for
which ων < 0 andων < ωτ. This set of points corresponds to
the region in which the normal perturbations decay faster than
tangential ones and correspondingly can be defined as the locus
of local normal hyperbolic (LNH) behavior.

If one considers any initial condition belonging toDLNH such
that the corresponding orbit is fully contained in the domain
DLNH, it follows from definition that any such orbit fulfills
conditions i-iii stated above and therefore is a valid candidate
for being considered as a “slow invariant manifold”. For
example, Figure 14A shows the local normal hyperbolicity locus
for the Semenov model (â ) 0.31,ε ) 10-3), and lines (a) and
(b) are two distinct forward orbits that may represent equally
well a template for a slow invariant manifold in the bounded
region 0 e x e 5, 0 e y e 1. The latter property can be
confirmed by the behavior of the stretching ratior(x) vsx along
these manifolds, which is depicted in Figure 14 panel B. This
is a further indication of the intrinsic arbitrariness in the
definition of slow manifolds in bounded domains of the phase
space. In fact, the existence and the properties of the transient
Hartman-Grobman manifolds are a further confirmation that
global invariant structures (such as global/generalized slow
manifolds) and local slow invariant manifolds with a stretching
ratio greater than 1 may be, in some cases, two distinct and
different point sets (e.g., Figure 17 panel E).

The classification of slow invariant manifolds using the
dichotomies global/generalized inverting/noninverting can be
used to frame some computational problems arising in connec-
tion with model reduction algorithms.

Indeed, global noninverting slow manifolds are the ideal
invariant structure in view of achieving an efficient and reliable
model reduction. Instead, the development of global inverting
slow manifolds, that is, global slow manifolds along which the
local stretching ratior(z) can, at least in a finite number of
compact regions, take values lower than 1, i.e., where normal
perturbations decay more slowly than tangential ones, affects
model reduction in a number of ways.

First, as shown in section 3 with reference to the Semenov
model, the region of inverting behavior causes the ILDM to be
composed of two disconnected branches (Figure 3), the one
emanating from the equilibrium point approximating the tran-
sient Hartman-Grobman manifold discussed in section 4.2 and
the other branch approximating the other noninverting portion
of the slow manifold.

Higher order methods such as the iterative methods by
Roussel-Fraser (RF) or the computational singular perturbation
(CSP) refinements are also unable to identify the global inverting
slow manifold found by MLA, because these procedures either
fail to converge or find multiple roots in the inverting region.

This implies that, whenever an inversion occurs, the diag-
nostic and reduction methods may perceive system dynamics
as no longer one-dimensional and that normal modes should
be necessarily accounted for. In other words, the phenomenon
of stretching rate inversion along a global, anda fortiori a
generalized slow manifold, explains why in the application of
many model reduction algorithms (such as ILDM or CSP) a
nonmonotonically decreasing variability in the number of active
modes along system trajectories may be observed. This phe-
nomenon can be fully appreciated in dynamical models in higher
dimensional phase spaces thann ) 2.

However, it is interesting to address the question of how the
knowledge of the development of a global inverting slow
manifold in a dynamical system, and the ability to identify it,
can be related to model reduction.

By inspection of Figure 17 panel E, one can note that orbits
starting on they-axis, for small values ofy, undergo a fast
transient nearly parallel to thex-axis, and then they all coalesce
onto the transient Hartman-Grobman manifold (thick solid line
a); thus, this class of orbits is reducible along the transient
Hartman-Grobman manifold as approached from small values
of x.

However, for large values ofy, all orbits turn around the
extremum point of the Hartman-Grobman manifold (atx )

Figure 14. (A) Local normal hyperbolicity locus (shaded region) for the Semenov model forâ ) 0.31,ε ) 10-3 in the region 0e x e 5, 0 e y
e 1. Curve a is the global slow manifold corresponding to the saddle node connection with a fixed point-at-infinity. Curve b is one of the infinitely
many candidates for being a portion of an invariant exponentially attracting slow manifold in this region. (B) Stretching ratior(x) vs x along the
two slow manifolds depicted in panel A.

Figure 15. Convergence of the MLA method toward a global slow
manifold for the Semenov modelâ ) 0.31, ε ) 10-2. The arrow
indicates increasing timestn ) 0.01, 0.02, 0.05, 0.1, 0.5. The thicker
line is the slow manifold.
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x*), are attracted by the noninverting portion of the global
inverting slow manifold (labeled as (b) in Figure 17 panel E),
and eventually are funneled along the global inverting slow
manifold found by MLA (line b in Figure 17 panel E) until
reaching the Hartman-Grobman manifold; thus, this class of
orbits is reducible along the global inverting slow manifold,
despite its inverting nature.

There exist two other types of dynamics corresponding to
orbits with initial conditions either lying between the Hartman-
Grobman manifold and the global slow manifold (line b) or
below line b. In both cases, the orbits cross over the inverting

region with paths nearly parallel to line b to eventually reach
the Hartman-Grobman manifold; thus, these classes of orbits
are also reducible along the Hartman-Grobman manifold as
approached from large values ofx.

This discussion points out that model reduction could indeed
be possible even when a region of inversion occurs, but the
reduced model cannot be expected to be built upon a single
slow manifold constraint, because the development of the region
of inversion induces a partitioning of the phase space in a
number of basins of attraction characterized by requiring
different low-dimensional manifolds as constraints. Clearly,
although reasonably accurate approximations of the Hartman-
Grobman manifold can be found by methods such as ILDM,
CSP, and RF, none of these methods can identify the global
inverting slow manifold, whereas, at least for one-dimensional
manifolds, MLA has been demonstrated to be successful.

6. Concluding Remarks

This Article has developed a detailed analysis of the structure
and the properties of slow manifolds in prototypical models of
thermal combustion by focusing on the occurrence of local
bifurcations (associated with the points-at-infinity) that modify
the nature and existence of slow invariant manifolds.

The concept of slow invariant manifolds has been developed
in a fully geometric framework divorced from any perturbative
formulation. By making use of the Poincare´ projected system,

Figure 16. Semenov model forε ) 10-2 > εc(â), â ) 0.21.
Convergence of material lines toward a generalized slow manifold. Plot
of Ln for several values oftn at the initial stages of the process. Line a
refers tot1 ) 0.1, (b) tot2 ) 0.12, (c) tot3 ) 0.15, (d) tot4 ) 0.2. The
initial material lineL0 coincides with they-axis.

Figure 17. Estimate of the transient Hartman-Grobman slow manifold;â ) 0.31 andε ) 5 × 10-2 > εc in panels A-C; â ) 0.21 andε ) 5 ×
10-3 < εc in panels D-F. (A) and (D) stretching ratior(x) vs x along different orbits starting on they-axis for increasing values ofy0 (direction
of the arrow). The dotted horizontal line isr ) 1. The thick line shows the behavior ofr(x) along the particular orbit for whichr(x) g 1 for x ∈[0,
x*], r(x*) ) 1, dr(x)/dx|x* ) 0. (B) and (E) Transient Hartman-Grobman slow manifold and spatial behavior of nearby orbits (dotted lines). Curves
a and b in (E) show the spatial behavior of the transient Hartman-Grobman manifold (line a) coexisting with the global slow manifold (line b).
(C) and (F) Behavior of-ωτ(x) (curve a),-ων(x) (curve b), andr(x) (curve c) vsx along the transient Hartman-Grobman slow manifold. The
dotted vertical line indicatesx*.
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a slow invariant manifoldW can be viewed as the heteroclinic
connection between the equilibrium pointP0 and the saddle
point-at-infinity P1. Material line advection provides a simple
method to estimateW.

Conversely, although the slow manifold so defined is unique,
its dynamical properties may be “pathological” for what
common sense expects to be a “well-behaved” slow manifold.

The occurrence and nature of the slow manifolds exhibited
by a given dynamical system have a deep impact on the validity
and the applicability of methods and techniques suited for model
reduction and kinetic simplification. Although we considered
in this Article solely low-dimensional prototypical models for
combustion and explosions, the qualitative characterization of
the invariant slow manifolds developed in section 3 provides
useful and general hints on the computational difficulties that
may be encountered in higher dimensional combustion models.
Although in the presence of global slow manifolds it is expected
that model reduction techniques may be successfully applied
over the whole phase space, more complex situations may arise
if solely a generalized slow manifold or a transient (Hartmann-
Grobman) manifold exists. In the latter case, model reduction
techniques may give rise to the detection of “apparent” slow
manifolds that appear as disconnected sets (i.e., as a union of
disconnected submanifolds) in which dimensional variability
may occur (i.e., in which the number of slow variables may
apparently be different within each disconnected submanifold).
This phenomenon has been observed for high dimensional
combustion systems and finds a clear interpretation within the
geometric theory developed in this Article as a consequence of
stretching-rate inversion (discussed in section 3.1). The extension
of the geometric approach proposed in this article to kinetic
schemes in phase spaces possessing dimensions higher thann
) 2 is developed in ref 21.

Appendix A

The material line advection (MLA) technique is used in the
analysis of fluid mixing systems to obtain the geometric structure
of the invariant unstable manifolds.35,36 The MLA technique
for one-dimensional slow manifold identification is briefly
reviewed below.

Given an infinite-length initial curveL0 passing throughzeq,
consider the forward iteratesLn ) φtn(L0), n ) 1, 2, ..., where
{tn}n)1

∞ is a monotonically increasing sequence of positive time
instants diverging to infinity.

For n f ∞, Ln converges toward the global slow manifold,
whenever it exists, or toward the generalized slow manifold.

In the practical implementation of the method, it is not
necessary to consider “infinite-length” initial curvesL0 but solely
a sufficiently long initial material line. Depending on the slowest
fast time scaleτf,min all over the phase space, it is sufficient to
considertn ∈ O(τf,min) in order to achieve a satisfactory conver-
gence toward an invariant slow manifold.

Figure 15 shows the convergence of the MLA method for
the Semenov model atâ ) 0.31> â* and ε ) 10-2 < εc. The
global slow manifoldW s is depicted with a thicker line. Observe
that for tn ) 0.5 the material line already collapses ontoW s.

The forward iterates of material lines allow the identification
of local and generalized slow manifolds (which close tozeq are
tangent to the fast eigendirections). Figure 16 shows the
evolution of a material line (initially coinciding with the non-
negative portion of they-axis) at the early stages of the process
for ε > εc.

As expected, at early times, material lines bend around a local
slow manifold of the equilibrium pointzeq and progressively

collapse toward the invariant manifoldW1s represented by the
positive portion of thex-axis, which is the unique generalized
slow manifold in the first quadrant.

Appendix B

In this appendix, we present a way for constructing the
transient Hartman-Grobman slow manifold for the Semenov
model. This can be performed by considering many different
orbits starting from (0,y0) (i.e., points on they-axis, y0 > 0)
for increasing values ofy0 and by analyzing the behavior of
the stretching ratior along the orbits. The Hartman-Grobman
slow manifold can be defined as the maximal portion of the
particular orbit of this family for whichr(x) g 1 for x ∈ [0, x*]
and such thatr(x*) ) 1 and dr(x)/dx|x* ) 0 (see Figure 17A,
thicker line). The resulting transient manifold is depicted in
Figure 17B together with the behavior of different orbits close
to the equilibrium pointzeq.

Figure 17C depicts the behavior of the tangential/normal
stretching rates and of the stretching ratio along the transient
manifold. It can be observed thatων(x) < 0 andωτ(x) < 0 (i.e.,
the transient manifold is normally stable (exponentially attract-
ing)) and r(x) > 1 (i.e., the transient manifold is a slow
noninverting manifold).

The blow-up of a global slow manifold forε > εc makes the
occurrence of transient Hartman-Grobman manifolds associated
with the local behavior of the system close tozeq particularly
significant. However, the presence of such transient manifolds
can be established also forε < εc, in all the situations in which
there exists a global slow manifold showing inversion close to
zeq.

This phenomenon is depicted in Figure 17D-F for â ) 0.21
andε ) 5 × 10-3 < εc. In point of fact, Figure 17E shows the
structure of the transient Hartman-Grobman manifold (line a)
coexisting with the global slow manifold (line b) and the
behavior of orbits close to the equilibrium pointzeq. Visual
inspection of Figure 17D-F indicates that the local behavior
close tozeq is essentially governed by the transient Hartman-
Grobman manifold, although for the set of parameter values
considered in Figure 17D-F, there exists a global (inverting)
slow manifold.
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(46) This note briefly reviews some concepts of dynamical system theory

that will be used throughout the paper. LetM be an n-dimensional
differentiable manifold, withM ⊂ Rn. A smooth curve through a point
p ∈ M is aC1-mapγ: (-a, a) f M with γ(0) ) p. The tangent space to
M at a pointp ∈ M, TpM, is the set of all vectors tangent to smooth curves
passing through the pointp ∈ M. The tangent spaceTpM is ann-dimensional
linear space, and we shall view it as a subspace ofRn. A vector field f on
M is a functionf: M f Rn such thatf(p) ∈ TpM for all p ∈ M. If we
define the tangent bundle ofM, TM, as the disjoint union of the tangent
spacesTpM to M for p ∈ M, then a vector field onM is a functionf: M
f TpM. Let us consider the systemx3 ) f(x), wherex ∈ M, with M being
an n-dimensional manifold of classC2 and f a C1 vector field onM. We
have local existence and uniqueness of solutions through any pointx0 ∈ M.
A solution or integral curve onM, φt(x0) is tangent to the vector fieldf at
x0. If M is compact andf is aC1 vector field onM, thenφt(x0) is defined
for all t ∈ R andx0 ∈ M, and it can be shown that (i)φ ∈ (R × M), (ii) φs°φt
) φs+t for any real values ofs,t, where “°” indicates composition, i.e.,
φs°φt(p) ) φs(φt(p)). φt is called the phase flow on the manifoldM
associated with the vector fieldf. By definition, dφt(x)/dt ) f(φt(x)). If the
manifold M is the phase spaceRn itself, we indicate the tangent space of
Rn at z simply asTz.

(47) Let c and T be the concentration of the reactantA and the
temperature, respectively. The energy and mass balance equations read

whereτ is the physical time,F the density,cv the specific heat, (-∆H) >
0 the reaction heat,k0 the kinetic rate prefactor,E the activation energy,U
the overall heat transfer coefficient,a the specific exchange surface area
(i.e., the ratio of the heat exchange area to the reactor volume), andTc the
coolant temperature. By introducing the dimensionless variables,x ) (T -
Tc)γ/Tc, y ) c/c0, t ) τk0e-γ, wherec0 is a reference concentration value,
γ ) E/RTc, â ) 1/γ, P ) γ(-∆H)c0/FcvTc, Q ) Uaeγ/Fcvk0, δ ) Q/P, ε )
P-1, the dimensionless formulation of the Semenov equations attains the
form of eq 10.

(48) If ε is a small parameter in the Semenov model, eq 10 is already
expressed in a singularly perturbed canonical form and the reduced manifold
Wred, defined forε ) 0, reads asWred ) {(x, y)|y ) h(x) ) xδ/q(x), x ∈ (xc,
∞)}, where the valuexc ) -1/â corresponds physically toT ) 0 K. It can
be shown that, forâ > 1/4,Wred is linearly stable and the conditions of the
Fenichel theorem apply, so that there exists, for sufficiently smallε, an
invariant manifoldWε that isO(ε) close toWred, andWred can be viewed
as the slow-dynamic template atε ) 0. Forâ < 1/4,Wred is linearly unstable,
and its nonmonotonic behavior (it exhibits a maximum and a minimum as
a function ofx) does not correspond to any limit template for the slow
invariant manifoldWε asε f 0. This claim can be simply proved as follows.
The one-dimensional slow manifold is an invariant manifold. Therefore,
given a pointz*) (x*, y*) belonging to it, the phase flowφt(z*) for t g 0
coincides with the portion of the slow manifold defined forx ∈ [0, x*].
However, the behavior ofy(t), along a trajectory of the Semenov system
starting from a point withy* > 0, is monotonically decreasing, independently
of the values ofε. Actually, dy/dt < 0, for all t, x, and this corresponds to
the fact thaty represents the dimensionless concentration of an irreversibly
consumed reactant in a batch system, so that it must necessarily decrease
in time. Suppose that the representationy ) hε(x) for the invariant manifold
Wε possesses a local minimum atx ) xm, and takex* > xm. There would
exist a region of the manifold at which dy/dt > 0, which is impossible by
the irreversibility of the reaction.

(49) Consider a generic manifoldW different fromW s andW f and a
point z ∈ W, z * 0. A vectorc0(z) tangent toW at z can be expressed as
c0(z) ) cses + cfef, wherees andef are the eigenvectors of the coefficient
matrix, associated with the eigenvalues-λs and-λf, respectively, andcs,
cf * 0 are real numbers.c0(z) is parallel toF(z). For t > 0, ct(z) ) cse-λstes

+ cfe-λftef ) e-λst[cses+ O(e-(λf-λs)t)], whereO(x) is a quantity order of its
argumentx. It follows that limtf∞ log||ct(z)||/t ) -λs. A normal vector
n0(z) at z can be expressed asn0 ) nses + nfef, wherens, nf are different
from 0, and such thatn0 ⊥ c0. At time t > 0, φt

/(z)n0 ) nse-λstes+ nfe-λftef.
The norm||Πφt(z)[φt

/(z)n0]|| of the normal projection is simply the absolute
value of the vector product (indicated with “×”) of φt

/(z)n0 times the unit
tangent vectorct(z)/||ct(z)||, i.e., ||nt|| ) |(φt

/(z)n0) × ct(z)|/||ct(z)||. After
the expressions for the two vectors derived above are substituted, and after
some elementary algebra, it follows that||nt|| ) Ce-λft + O(e-(2λf-λs)t),
whereC ) |(nscf - nfcs)(es × ef)| > 0. Therefore, limtf∞ log||nt||/t ) -λf,
andΛω ) limtf∞ log||nt||/log||ct|| ) λf/λs. ForΛR, the same procedure can
be repeated, with the only difference thatc-t(z) ) eλft[cfef + O(e-(λf-λs)t)]
with t > 0. Therefore, limtf∞ log||c-t(z)||/t ) λf, and ||n-t(z)|| )
|(φ-t

/ (z)n0) × c-t(z)|/||c-t(z)|| ∼ eλst. It follows thatΛR ) limtf∞ log||n-t||/
log||c-t|| ) λs/λf, which proves the third line in Table 1. The other results
reviewed in Table 1 can be obtained in the same way, by simply observing
that, forW s, c0 ) es, and, forW f, c0 ) ef.

F cv
dT
dτ

) (-∆H)k0e
-E/RTc - Ua(T - Tc)

dc
dτ

) -k0e
-E/RTc
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